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Abstract

A Eulerian-Lagrangian model was used to predict the trajectory and spatial distribution of odor and odorants downwind from an industrial
facility with multiple sources of odor emissions. Specifically, the model was used to simulate the dispersion of odor from a confined animal
feeding operation (CAFO) under different meteorological conditions: (1) during daytime when the boundary layer is usually turbulent due
to ground-level heating from solar short wave radiation, and (2) during the evening when deep surface cooling through long-wave radiation
to space recreates a stable (nocturnal) boundary layer. Aerial photographs were taken of the CAFO, and the geographical area containing
the odorant sources was partitioned into 10 m2 grids. Relative odorant concentrations present at each grid point that corresponded to an
odor source were measured on site and then entered into a database. The predicted odor dispersion distance was found to be greater at
night-time than during daytime and was consistent with field reports from individuals living near the CAFO. The model utilizes single
numbers that represent relative concentrations or intensities (e.g. from an electronic nose or human judgments) to simulate downwind
dispersion. The advantages of this algorithm over standard Gaussian plume models are that: the velocity variances and covariances among
its three components, integral time scale (a measure of eddy coherency), and complex boundary conditions (e.g. complex release points,
surface boundary conditions) are explicitly considered.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Long distance dispersion of odor is a problem in commu-
nities surrounding many odorous industries such as confined
animal feeding operations (CAFOs), wastewater treatment
plants, composting facilities, and paper mills. This paper de-
scribes a paradigm for predicting the trajectory of odorous
emissions from a CAFO with multiple sources of odor. Mea-
surements from machines or humans can be used as input
to predict the long-range transport and deposition of odor-
ants (compounds that produce odor sensations) and odor (the
sensation).

2. The dispersion model

The mechanistic model underlying the odor projec-
tions in this paper has been used previously to predict the
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long-distance dispersal of seeds by wind[1]. It is based on
stochastic differential equations for turbulent diffusion that
utilize a Eulerian-Lagrangian approach[2,3]. The approach
solves for the flow statistics in the Eulerian frame of refer-
ence and then proceeds to solve for air parcel trajectories
in the Lagrangian frame of reference. The Eulerian frame
of reference models the flow statistics (i.e. velocities) at
a fixed point, while the Lagrangian trajectory calculations
follow the coordinates of an individual air parcel until this
air parcel intercepts the ground surface or escapes from the
atmospheric boundary layer (see[4]).

Overall, the model uses the spatial distribution of odor
concentrations at emission sources (in steady-state condi-
tions) to predict the spatial distribution of odor and odorants
downwind. The model can predict transport over the terrain
under a variety of planetary boundary layer (PBL) conditions
including the variations over the diurnal cycle. The PBL is
the part of the atmosphere closest to the ground (i.e. where
we live); it varies in thickness between 100 m at night to 3 km
during daytime. In daytime conditions, the boundary layer is
usually very turbulent due to ground-level heating resulting
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Fig. 1. (a) and (b) Height and temperature conditions of the boundary layer during the day and night, respectively; (c) logarithmic relationship of height
and wind speed in the surface layer.

from solar short-wave radiation[5]; dispersion results from
turbulent mixing in both vertical and horizontal directions.
In the evening, deep surface cooling through long-wave radi-
ation to space recreates a stable nocturnal boundary layer of
statically stable air with weaker, sporadic turbulence, above
which is a residual layer (basically the leftover part of the
daytime mixed layer; seeFig. 1a and b). Because vertical
motion and turbulence is suppressed at night, odorants are
not carried upward as readily as during the daytime, and
mixing is weak. Consequently, odorants (such as those em-
anating from flowers and malodorous sources) smell much
stronger on summer nights than during the day because of
the stillness of the air. The model utilizes the observed mean
velocity near the surface and extrapolates this velocity at all
heights using the analytic function inFig. 1c.

3. Applying the model

The specific example used in this paper illustrates the fate
and transport of odor emitted from a swine operation with
multiple odor sources including an effluent lagoon, housing
units, and land application of effluent from the lagoons onto
agricultural fields by a spraying process. Aerial photographs
were taken of the farm (seeFig. 2), and the geographi-
cal area containing the odorant sources was partitioned into
10 m2 grids. Relative odorant concentrations present at each
grid point that corresponded to an odor source (seeFig. 3)
were determined from on site measurements and then en-
tered into a database. The computer code for the model
was employed to predict the odor downwind for a given set
of meteorological conditions. In the example here, human
odor measurements were the basis of the modeling. The to-
tal intensity response from an electronic nose or a portable
photo-ionization detector (PID) can also be used to deter-
mine the intensity of odorant sources. However when using

a device, the relationship between the machine and human
odor intensity must be established.

In order to perform the dispersion modeling for odor, it is
necessary to determine a mathematical relationship between
odor perception and measurable concentration of odorants.
That is, the psychophysical relationship between psycholog-
ical or sensory qualities on the one hand must be related to
physical or stimulus quantities on the other. This is neces-
sary because it is the odorants (physical entity) and not the
odor (sensory property) that is dispersed. An overview of
the literature on the senses indicates that perceived intensity
tends to be exponentially related to stimulus magnitude[6].
In sensory systems other than chemical senses of smell and
taste, the continua on which sensations vary (i.e. wavelength,
frequency) are known. In audition, for example, the relation-
ship between intensity and the physical signal is logarithmic,
and the standardized universal constant is the decibel. That
is, the sensation perceived by a human is related logarith-
mically to the energy transmitted to the auditory receptors.
Furthermore, the decibel is unrelated to the source or quality
of the sound. In olfaction, on the other hand, the sensation is
more complex because it depends both on the concentration
of the stimulus and on its chemical composition.

Odorous emissions consist of mixtures of many molecules
that in aggregation induce a unique intensity and quality.
That is, the types of compounds in the airborne mixture and
their relative concentrations both affect the perceived odor
intensity[7].

4. Simulated results and discussion

A hypothetical example of the relationships between
three individual odorants and perceived intensity is given
in Table 1. For Odorant A, many molecules are necessary
to induce a strong odor, while relatively fewer molecules
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Fig. 2. Aerial view of a swine facility illustrating housing units and lagoon.

Fig. 3. Sources of odor at each grid point; measured relative intensity is entered into database.

are necessary to produce the same strong odor intensity in
Odorants B and C. The logarithmic relationship between
perceived odor intensity and number of molecules is shown
in Fig. 4. The intensity of a mixture of these compounds,
however, cannot be easily predicted from the raw concen-
tration values. Even if the actual ratios of these compounds
in a mixture were known, it still would not be possible to

predict the resulting odor intensity of the mixture due to the
unknown nature of interaction of the mixture with the nasal
receptors.

The relationship between perceived odor intensity and
number of molecules in ambient air on a swine facility are
even less predictable due to the presence of hundreds of
different types of molecules. Thus, the model utilizes hy-
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Table 1
Relationships between three hypothetical odorants and perceived odor intensity

Odor intensity A: concentration (ppt) B: concentration (ppt) C: concentration (ppt)

0 = None at all 1 1 1
1 = Very weak 12 7 2
2 = Weak 144 49 4
3 = Moderately weak 1728 343 8
4 = Moderate 20,736 2401 16
5 = Moderately strong 248,832 16,807 32
6 = Strong 2,985,984 117,649 64
7 = Very strong 35,831,808 823,543 128
8 = Maximal 429,981,696 5,764,801 256

pothetical “odorous air parcels” to predict odor downwind
using an equation that can be confirmed by experimental
odor intensity measurements. Odorous air parcels are used
for modeling rather than the sensations themselves because
it is the physical odorants that are dispersed. For the exam-
ple illustrated in this paper, we developed an equation to
represent the relationship between perceived odor intensity
determined in the field by a trained odor panel and “odor-
ous air parcels” released by the mathematical model at each
10 m2 grid that decay over distance:

y = 33.546 ex

where x is the odor intensity on a scale from 0 to 8 (0
= none at all; 1= very weak; 2= weak; 3= moderately
weak; 4= moderate; 5= moderately strong; 6= strong; 7

Fig. 4. Relationships between odor intensity and concentration for three
hypothetical odorants.

= very strong; and 8= maximal) andy is the number of
“air parcels” released. When odor is maximal (e.g. rated 8)
at a specific 10 m2 grid, the number of odorous air parcels
released will be 100,000. When odor is rated moderate (e.g.
rated 4), only 4978 odorous air parcels will be released.
When no odor is perceived at a specific 10 m2 grid (e.g.
rated 0), no odorous air parcels will be released from the
10 m2 grid. Thus, the model described above predicts the
exponential decay over distance when odorous air parcels
that are related monotonically to human odor intensity are
released from a grid of sources arranged to mimic the emis-
sions from an odorous facility. The model is then confirmed
by experimental measurements.

The dispersion plots inFig. 5 illustrate the predicted odor
intensity for the swine operation shown above during the
day and at night. The plots utilize the logarithmic values of
the number of odorous air parcels. That is, the number of
odorous air parcels that reach any grid location downwind
on dispersion were plotted because odor intensity (as noted
above) is exponentially related to odorant concentration.

The findings here demonstrate odor dispersion prediction
under different meteorological conditions, e.g. dispersion at
night-time is greater than during daytime. This finding coin-
cides with field reports from individuals living near CAFOs.
The advantages of this algorithm over standard Gaussian
plume models are that: the velocity variances, integral time
scale (a measure of eddy coherency), and complex boundary
conditions (e.g. complex release points, surface boundary
conditions) are explicitly considered. All that is needed for
input to the model are single numbers that represent rela-
tive concentrations or intensities of the various odor sources.
These numbers can be determined using the total response
of all sensors of an E-nose, a photoionization detector (PID),
or human odor intensities. However, if an electronic nose or
PID is used for the modeling, a mathematical relationship
between the machine output and human sensory perception
is required. This is because the perceived intensity depends
on the specific chemical compounds that constitute the odor.

5. Other applications of the model

An important practical application of the modeling pro-
cedure described here is the prediction of the potential ef-
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Fig. 5. Predicted dispersion of odorous air parcels during (a) daytime and (b) night-time for the same reference wind speed at 10 m height. The intensity
scale is displayed in (c).

fectiveness of odor control technologies alone and in ag-
gregate for reducing odor downwind of odorous industrial
facilities. Typical examples of processing procedures to re-
duce odor at the source are wet scrubbers, activated carbon
adsorbers, thermal oxidation, biofilters, and bioscrubbers.
These procedures can be costly to install so it is necessary to
predict a priori which intervention (or combination) will be
most effective. In wet scrubber reactors, odorous air contacts
a chemical solution (usually containing sodium hypochlo-
rite and caustic soda) that allows absorption and subsequent
oxidation of odorous compounds such as H2S. Activated
carbon adsorbers utilize caustic-impregnated carbon to re-
move H2S and a virgin-activated carbon to remove VOCs
and non-H2S odorants. Thermal oxidation heats odorous air
to high temperatures that oxidize the odorous compounds.
Biofilters remove odorants by transporting the odorous emis-
sions through porous natural media such as compost, soil,
wood chips, or peat. Bioscrubbers oxidize odorous com-
pounds as air is passed through a biologically active medium
(e.g. bacteria adsorbed into a liquid film).

6. Conclusions

The potential effectiveness for various arrangements and
types of odor remediation methodologies at an odorous fa-
cility in neighboring communities can be modeled using the

method described above before expensive construction com-
mences. Dispersion modeling utilizing single numbers that
represent relative concentrations or intensities (e.g. from an
E-nose or human judgments) of the current odor sources for
a facility can be compared with dispersion modeling of ex-
pected relative concentrations after installation of odor reme-
diation equipment. This will optimize the choice of appropri-
ate odor control technologies for a given industrial operation.
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