WATER RESOURCES RESEARCH, VOL. 29, NO. 4, PAGES 1063-1070, APRIL 1993

Estimation of in Situ Hydraulic Conductivity Function
From Nonlinear Filtering Theory
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A method based on an optimal nonlinear filtering technique is proposed and tested for the
determination of the hydraulic conductivity function from a field drainage experiment. Simplifications
to Richards’s equation lead to a Langevin type differential equation to describe the redistribution of
stored water as a function of drainage flux excited by a random initial condition and state forcing. The
derived equation is then utilized in an optimal estimation scheme that explicitly accounts for the
formulation and observation uncertainty in determining the hydraulic conductivity parameters. A field
drainage experiment was carried out to study the usefulness of the proposed method for routine in situ

hydraulic conductivity function estimation.

INTRODUCTION

Mathematical description of water flow in the unsaturated
zone is complicated by uncertainties in the determination of
the hydraulic conductivity—moisture content functional rela-
tion (K-60). In practice, one of the assumptions made in field
estimates of hydraulic conductivity is that the observations
of moisture content are taken to be error free. Numerous
studies on neutron probe scattering techniques indicate that
moisture conteiit observations commonly used in field drain-
age experiments are anything but error free [Gardner and
Kirkham, 1952; Hewlett et al., 1964; Haverkamp et al., 1984;
Parlange et al., 1992a; Schmugge et al., 1980; Sinclair and
Williams, 1979; Vachaud et al., 1977].

The sources of uncertainty in the hydraulic conductivity
function at a certain point in the natural environment are the
result of (1) simplifying the description of the physical
processes that are used indirectly to infer the hydraulic
conductivity function; and (2) the measurements used to
determine the hydraulic conductivity function {Fliihler et al.,
1976; Andersson and Shapiro, 1983; Mishra and Parker,
1989].

One possible approach that can be used to explicitly
assess the combined sources of uncertainty in the hydraulic
conductivity function is nonlinear filtering. In this approach,
an optimal filter is constructed to provide a minimum mean
square error estimation solution path to a differential equa-
tion describing the redistribution of moisture content {Gard-
ner, 1990; Milly and Kabala, 1986; Milly, 1986]. Then a
scheme which accounts for both measurement and system
uncertainty is developed for processing real time observa-
tions of @ and hydraulic gradient (dH/dz) to obtain the K-6
relation. The proposed methodology presumes that the sim-
plifying assumptions of Richards’s equation in drainage
experiments generate a stochastic forcing to an initial value
differential equation describing the stored water redistribu-
tion [Sobczyk, 1991, pp. 113-119]. The hydraulic conductiv-
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ity parameters from discrete stored water and hydraulic
gradient measurements can be determined iteratively from a
sequence of prediction-lipdating steps to maximize a defined
likelihood function.

Current field methods (CGA (due to Chong, Green, and
Ahuja), theta, flux, and classical [see Libardi et al., 1980]),
together with the proposed method baséd on the nonlinear
filtering theory, were compared based on a drainage exper-
iment carried out at a field site.

THEORY

Soil Water Transport

The one-dimensional continuity equation for soil water
flow can be written

a0 aq
—=-— )
at 9z

where 6 is the volumetric moisture content, z isv the depth
(positive downward) and g is the drainage flux. Integrating

(1) from z = 0 (surface) to a depth b yields
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where q is the flux at z = 0, and g, is the vertical flux at z
= b. A no-flux boundary condition is imposed at z = 0 so

that qy = 0.
Equation (2) is rearranged:
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where W is the stored water (centimeters) between 0 and b.
Assuming isothermal and nonhysteretic flow conditions,

ow X8, oH, @
at b 0z

where K(8,) and H,, are the unsaturated hydraulic conduc-
tivity and the total hydraulic head at depth b, respectively
[Rose et al., 1965]. For a vertically homogeneous soil over
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the depth interval [0, b], where the moisture content varia-
tion with depth is not large, the average moisture contént
(6%) and 6, can be related by [Libardi et al., 1980; Jones and
Wagenet, 1984]

0b=A10*+Bl (5)

where 8* is given by

6% L[ 0d id 6
b L T ©

Various hydraulic conductivity functions with different
degrees of freedom and complexity have been proposed in
the literature. In this study we use an exponential two-
parameter hydraulic conductivity model of the form K(8,,) =
U exp (V6,), so K(8,) is related to W at depth b by

@)

where A = U exp (VBy) and B = VA,/b. The soil water
transport equation, as a function of stored water only, is
given by

K(6,) = A exp (BW)

ow KW oH o
at ) 9z ) ®)
z=b
Note that in the derivation that follows K(W) need not be
limited to an exponential function but can be any smooth

function that is differentiable.

State-Space Formulation and Model Development
Equation (8) may be written in state-space notation,

oH

dx(t) = —Ae‘”‘(‘)[a } dt + e (1) dr. (9)
Z

The corresponding discrete observation equation at time #;
k=10,1,2,3,-:4)is

Zn(ty) = X(2p) + v,,(2t8)

where X(?) is the stochastic state variable representing the
stored water W (between 0 and b) and Z,(t;) is the
measured amount of stored water at time ¢;. The state noise
£,(2) results from the various simplifications invoked in the
derivation of the soil water transport equation, which we
approximate as a zero-mean Gaussian noise [Arnold, 1974,
pp. 202-203; Sobczyk, 1991, pp. 60-61]. As was demon-
strated by Jones and Wagenet [1984], (8), on the average,
reproduces field measured moisture content. It is reasonable
to assume that (8) does describe the dynamical characteris-
tics of soil water flow so that the zero-mean state noise
assumption is appropriate. The nature of the noise distribu-
tion is an arbitrary approximation since the differences found
between the model and actual water movement in the field
may be site specific, moisture content dependent, etc. Note
that the experimental results of Jones and Wagenet [1984]
suggest relatively uniform scatter of comparable magnitude
over a wide range of soil water contents commonly encoun-
tered in field studies.

The neutron probe measurement noise v,,(¢,) at time 7, is
approximated by a zero-mean Gaussian distribution. The
product £, dt defines the Wiener increment df, of the Wiener
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process [Gardiner, 1990, pp. 80-82; Gardner, 1990, pp.
124-125], with zero mean and covariance function defined by
Q[8(t — s)ldt. Q is the variance per unit time of the Wiener
process which is treated as an unknown to be solved in this
study, and 8 is the Dirac delta function. We also assume that
(9) satisfies the existence and uniqueness conditions for the
time interval [0, ] so that the solution is well behaved and
does not ‘‘explode’’ at infinity [Gardiner, 1990, p. 94].

The stochastic noise components in the observation equa-
tion and state equation permit separate accounting for the
measurement errors and the model structure error [Gelb et
al., 1974, pp. 105-107]. Given the random nature of the
additive noises, the state variable X(¢) and the water storage
observations Z(t;) become random variables in time. For
the reader’s convenience, we adhere in the following deri-
vation to Gelb et al.’s [1974] notation since various details
and proofs are elaborated upon in this reference. The
method used to determine the evolution of the mean and the
variance behavior of X(¢) in time is discussed next.

Taking the expectation of (9) and using the zero-mean
property of the Wiener increment gives

dX\ - sxwy| 2
< dt >_ (Ae ) dz

where ( ) denotes the expectation operation. Note that
{X (1)) is defined since (9) satisfies the existence and unique-
ness conditions. In (11), the hydraulic gradient is treated as
a time-varying deterministic input which excites the state
variable of the system. Since the differential and the expec-
tation operators are interchangeable, an expression for the
state mean may be obtained as (dX(¢)/dt) = d{(X(r))/dt. On
the right-hand side of (11) a closure problem arises since all
moments of X(¢) are required for the evaluation (4 exp
[BX(£)]), that is, in order to solve for d(X(¢))/dt all the
moments of X(¢) are needed. It is necessary to develop an
approximate closure scheme for the given system. One may
expand a stochastic function f{X(r)) (in this case f[X(r)] = A
exp [BX(r)]) around (X(£)) with a first-order Taylor series
expansion:

(11)

df
fX@) = fLX (1)) + - (X(0)

—(X()) + O[(X(t) —(X(HN?].  (12)

By applying the expectation operator on both sides of (12)
and neglecting higher-order terms, (11) becomes

dX(@W) _ _AeB(X(I))[dH} ‘
z=b

— 13
dt dz (13)
Equation (13) approximates the dynamic evolution of the
mean behavior of the stored water in time between 0 and b.
If another expression for the hydraulic conductivity function
is used, a similar approach can be employed to arrive at a
dynamic equation that is dependent on only the mean (X(z))
and the hydraulic conductivity parameters (see Appendix
B).
The variance P(¢) is given by

P(1) = ((X(1) =X () D). (14)

A dynamic equation for P(#) may be constructed by differ-
entiating (14) and interchanging the expectation and differ-
entiation operators,
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15
dt dt 15)
Linearization of the right-hand side of (15) around the mean
given in (12) yields

dP(t) _ dH dflx(1)
dt " dz dx

where Q is the state spectral density function or error
variance per unit time [Gelb er al., 1974, p. 122). The
derivative df(X(¢))/dx in (16) is evaluated at (X(¢)). Using
the exponential hydraulic conductivity formulation, the ex-
tended Kalman filter-equations (EKF) for continuous dy-
namic and discrete observations become

dr() <d(X(t) - <X(r)>)2>

P(t)+Q (16)

X)) _ 4 BX@D) dH an
dt
dp@) | (4H) by
. 2[<dZ)ABe PO+Q  (18)

which constitute coupled predictive equations for both
{(X(2)) and P(t). These equations are also presented for a
power law hydraulic conductivity function in Appendix B.

In order to integrate (17) and (18) for (X(¢)) and P(¢), the
coefficients A, B, and Q as well as the initial conditions for
the mean (X(74)) and the variance P(#,) need to be provided.
Once the initial conditions are specified, (17) and (18) can be
simultaneously integrated to yield a prediction of (X(¢)) and
P(r) at time £, when an observation Z(¢;) is available. At
time ¢, predictions of (X(f)) and P(#), denoted by (X(r,)) ™~
and P(z;) ", respectively, may be corrected by employing
the information contained in the neutron probe measurement
Z(t,). Because of the measurement error variance R in
Z(t;), the predictions and measurements have to be
weighted according to their respective variances in the
updating steps. As shown by Gelb et al. [1974, pp. 107-110],
the optimal solution path requires the updating equations to
be given by

X)) " = (X)) ™ + Kg(Z(t) —(X(1))7) (19
P(t) " =P(1)) (1 - K,) (20)

where (X(t,))* and P(z;)" are the updated mean and
variance. K is the Kalman gain,

K,= L(tf)—— 21
P(t,)”" +R

which defines how to weigh the two sources of information:
predictions and observations. The structure of the nonlinear
extended Kalman filter defined by (17), (18), (19), (20), and
(21) is shown in Figure 1. The procedure is stable in practice
because the linearization trajectory is being computed
throughout the calculations [Puente and Bras, 1987]. It
should be noted that (17) and (18) are conservation equations
which respect the “‘physics’’ of the model while (19) and (20)
are ‘‘statistical’’ corrections, which redistribute water con-
tent in a statistical (nonphysical) manner.

Determination of the Hydraulic Conductivity Parameters

The parameters needed to apply the extended Kalman
filter equations are (X(0)), P(0), A, B, R, and Q. The initial
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Fig. 1. Structure of the extended Kalman filter displaying the
sequence of prediction-updating steps as neutron probe measure-
ments become available.

mean (X(0)) was taken as the water storage between 0 and 4
at field saturation, and the observation error variance R was
determined from the neutron probe calibration curve which
is discussed below in the experimental setup. The hydraulic
conductivity parameters A and B as well as Q and P(0) were
determined following an iterative multivariate optimization
scheme. This optnmzatlon procedure computes the un-
known parameters U = [A, B, P(0), 017 by maximizing the
joint distribution of all observations. This likelihood function
is defined by [Shumway, 1988, pp. 178-180; Gelb et al., 1974,
p. 103].

k=n
KU, Z(ty), Z(ty), -+, z(t,) = [ | p(ZaiX(t0) ™, O)
k=1 22)
where
p(Z(tl(X(1))~, U)

1

1
B [2mP(z,) "1 exp ( 2P(1,) " ) (Z(t) = X(1)) ") )

(23)

It should be noted that U appears implicitly in (22) and (23).
Equations (22) and (23) require that the coefficients A, B,
P(0), and Q result in a path of state means (X(¢;)) which
maximizes the probability of occurrence of the measure-
ments Z(r;). Maximization of (22) may be achieved by
minimizing the quantity S[(Z(¢;) — (X(2,)) 7 )21/P(t;)~
whose individual term appears in the exponential bracket in
(23). This results in an objective function (L) defined by the
weighted least squares

(24)

in which the weights of the residuals are [P(r) 17!, and n is
the number of stored water observations sampled during the
experiment.

Starting with initial estimates of A, B, P(0) and Q, (17)
and (18) are integrated from 7, until 7,4, for £ = 0, 1,
2, -++,n — 1. The predicted (X(¢;,))~ is compared to the
measurement Z(f; ;) to compute one term of the summation
defining L; then the updating procedure is performed using

P(ty) ™~

@) - X)) }
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(19) and (20) to obtain {X(¢;,,))*. Since four parameters
[A, B, Q, and P(0)] are required to minimize one objective
function, a multidimensional optimization scheme was nec-
essary. In this study, the multidimensional simplex method
[see Press et al., 1990, pp. 289-293] was used to recursively
estimate A, B, Q, and P(0). Since the multidimensional
simplex method is a simple unconstrained optimization, the
objective function L was artificially penalized to insure that
A, B, Q, and P(0) were positive. The filtering computation
scheme is outlined in Appendix A.

Other Field Methods

Four other methods are considered, namely the so-called
flux, theta, CGA, and classical methods [Libardi et al., 1980;
Jones and Wagenet, 1984]. The flux, theta, and CGA meth-
ods assume unit hydraulic gradient and require moisture
content observations only, while the classical method also
requires matric potential observations. A major disadvan-
tage of all four methods is the fact that an arbitrary smoothed
monotonically decreasing relation between 6 and ¢ is re-
quired.

EXPERIMENTAL SETUP

A field plot, 1.22 m X 1.22 m, was used to investigate the
applicability of the proposed methodology to determine the
in situ hydraulic conductivity function. The soil is a Yolo
light clay the properties of which are described by Buchter et
al. [1991]. A steel sheet 20 cm in depth was used to define the
plot square. The sheet was inserted 10 cm into the ground,
and the soil outside the sheet was compacted against the wall
to minimize lateral flow near the soil surface. An average
ponding depth of 3-5 cm was maintained for 10 days until no
changes in moisture contents were noted in the top 50 ¢m.
The infiltration rate after 10 days of ponding, with an applied
head of 5 cm, was 0.06 cm min~! which corresponds to a
field-saturated infiltration rate of 17 cm d ™' The surface was
then covered with a plastic sheet to insure the no-flux
surface boundary condition assumed. One neutron probe
access tube and three tensiometers per depth, located at 15
cm and 30 cm below the soil surface were used to monitor
the stored water in the top 22.5 cm and the hydraulic
gradient at 22.5 cm. Neutron probe and tensiometric obser-
vations were recorded every 6 hours for the first day and
every 12 hours afterward for a total period of 43 days. The
matric potential was recorded using a Soil Measurement
Systems Tensimeter (pressure transducer) that offsets the
barometric pressure and is accurate to within =1 mbar.

Since the accuracy of the neutron probe affects the obser-
vation noise, a study on the instrument and calibration was
required. Generally, the noise in volumetric moisture con-
tent measurements obtained from neutron probe soundings
is the result of two sources [Haverkamp et al., 1984;
Schmugge et al., 1980]: (1) instrumental noise, which de-
pends on the radioactive source (type and strength), the
detector type, and count time (for more details, see Dickey
[1990], Stone [1990], and Cuenca [1989], and (2) calibration
noise due to the instrumental noise, access tubing, air gap
between the probe and the access tube, and the soil sampling
method used to obtain the volumetric moisture content.

The neutron probe used in this experiment was a Campbell
Pacific Nuclear hydroprobe (Model 503) with a radioactive
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source of 50 mCi americium 241/beryllium located at the
midpoint of the detector with a preset count time of 32 s.
Generally, for a specific hydroprobe configuration the instru-
mental noise may be reduced by averaging an increasing
number of readings per depth [Parlange et al., 1992, 1993].
In order to select a reasonable number of readings per depth
and to determine the instrumental noise during calibration
and soundings, 214 unshielded readings at 75 cm soil depth
were recorded during a separate experiment as a function of
observation identification number; these are presented in
Figure 2 [Parlange et al., 1992]. During the 214 unshielded
readings, the moisture content was assumed to be constant.
The unshielded counts were uncorrelated in time as demon-
strated by the autocorrelation function in Figure 3. The raw
data of Figure 2 were transformed to a standardized series
with a zero mean and a unit variance. A moving average was
performed on the standardized series in order to assess the
reduction in instrument variance gained by averaging more
soundings [Parlange et al., 1992]. A window, whose width is
determined by the number of readings averaged, was passed
through the standardized series and the computed variances
were plotted versus the corresponding window width (Figure
4). It was desirable to reduce the instrument noise as much
as was practically possible. We decided to take three read-
ings per depth. Averaging three observations the instrumen-
tal variance component was reduced by 70% (Figure 4) and
diminished in importance relative to the neutron probe
calibration variance.

The calibration of the neutron probe was performed by
inserting six aluminum access tubes (outer diameter, 5 cm;
wall thickness, 1.3 mm; pressure rating, 825 kPa) of length
1.1 m into the ground. Aluminum tubing was optimal in this
experiment since aluminum is more transparent to fast and
thermalized neutrons than polyvinyl chloride [Allen and
Segura, 1990] yielding more thermalization of fast neutrons
by the soil medium which results in a better performance and
calibration [Stone, 1990]. The drilling/sampling was per-
formed using a Madera sampler (volume of sample, 60 cm?)
using the Soil Conservation Service (SCS) method discussed
by Dickey [1990]. The standard count prior to each set of
subsurface readings was obtained by averaging 10 shielded
counts [Dickey, 1990] over the casing of the neutron probe.
Figure 5 shows the calibration curve (26 samples) and the
best fit regression line (r*> = 0.85). The standard error of
estimate of the calibration curve was 2.1% equivalent volu-
metric moisture content, which was considered to be the
standard deviation of the instrument calibration. During the
drainage experiment three soundings per depth were aver-
aged so that the error in the volumetric soil moisture content
measurement was mainly due to the calibration curve stan-
dard error of estimate, equal to 2.1%. Therefore, the obser-
vation noise standard deviation is R = 0.021 x 22.5 cm.

RESULTS AND DISCUSSION

The nonlinear filtering approach was applied to determine
the hydraulic conductivity function. The initial mean (X(0))
and R used in the multidimensional optimization scheme
were 47.8% % 22.5 cm and (2.1% X 22.5 cm)? which
correspond with the measured saturation moisture content
and the observation noise, respectively. The measured field
saturated water content in this experiment was close to the
value reported by Buchter et al. [1991]. The raw data for 6*
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Fig. 2. Unshielded neutron probe soundings at 75 cm soil depth. The 214 displayed readings were taken over a 2 hour
span during which the moisture content was assumed to be constant.

and the hydraulic gradient dH/dz are displayed in Figure 6
for the 43 day period. The estimated A, B, @, and P(0) that
resulted in the maximum likelihood estimate were 1.244 X
10%cmd™}, 1.625cm ™}, 2.413 X 1072 cm? d 7!, and 1.504
x 1072 cm?, respectively. With the final estimates of A, B,
Q, and P(0), the predicted average moisture contents and
their standard deviations =+ (P(z)) /? are also shown in Fig-
ure 6, which indicates that all the probability mass is
contained within *=1 standard deviation.

The variation of the standard deviation in time indicates
that the proposed dynamic equation performs better during
rapid drainage (Figure 6), which is consistent with other
studies [Flithler et al., 1976]. Also in this near-saturated
range, most of the water content fluctuation is due to
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Fig. 3. Autocorrelation function of the unshielded neutron probe

counts from Figure 2.

drainage, and the instrumental error noise is not critical.
However, the instrumental noise becomes more noticeable
as the drainage flux (at » = 22.5 cm) becomes smaller when
steady state conditions are approached (Figure 6). This is
described well by an increase in the predicted variance. The
computed initial standard deviation (P(0) 2/py around the
field saturation value is 0.55%, indicating that the assumed
value of the initial mean (X(0))/b = 47.8% was very
reasonable in the multidimensional optimization scheme.
In this study, the variance per unit time (Q) of the state
noise (&) was assumed to be stationary and treated as a fitting
parameter in the multidimensional optimization scheme. An
equivalent water content variation of 0.69% d~! was ob-
tained for Q'2/b, indicating that the model prediction un-
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Fig. 4. Reduction in normalized instrument variance as a function
of readings averaged.
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Fig. 5. Neutron probe calibration curve. The coefficient of
determination r2 = 0.85, and the standard error of estimate SEE =
2.10% volumetric moisture content. The count ratio is defined as the
ratio of the actual count to the standard count.

certainty for quantifying daily stored water due to drainage is
0.69%. Note that the observation uncertainty is 2.1%.

The parameters A and B estimated by the nonlinear
filtering approach were then compared to those estimated by
the theta, flux, CGA, and classical methods (Table 1). The
raw moisture content and matric potential data were
smoothed by eye prior to the application of the latter four
methods. The smoothing insured a monotonic decrease in
moisture content with time, and an attempt was made to
preserve local trends observed in the data. With the excep-
tion of the CGA, all the methods provided comparable
estimates of A and B, with the classical method estimates’
being well within the 67% confidence band of the extended
Kalman filter predictions of P(#) for all of the observed
moisture content ranges (Figure 7). The CGA, theta, and flux
methods resulted in higher conductivity values than the
nonlinear filtering approach and the classical method, espe-
cially for @* > 0.43. This can be attributed to the deviations
from the unit-gradient assumption (see Figure 6).

Average Moisture Content [v/v]
=
'
il

Hydraulic Gradient [mbar/cm]

0.40-
0.38+
0.36-
0.34 T T T T T r r T -10
o 5 10 15 20 25 30 35 40 45
Time [days]

Fig. 6. Observed average moisture content as a function of time
(plus), hydraulic gradient (open square), predicted moisture content
(single solid line). The predicted time variation of standard deviation
(X)) = P(H)21b 1 is also shown (dashed lines).
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TABLE 1. Parameters A and B of the Hydraulic Conductivity
Function Estimated by Various Methods
Method A,cmd™! B,cm !
Nonlinear filter 1.24 x 1078 1.625
Classical 120 x 107° 1.872
Flux 1.56 x 107 1.865
Theta 245 x 107° 1.818
CGA 8.13 x 1071 2.212
Here K(W) = A exp (BW).
CONCLUSIONS

A nonlinear filtering approach for the determination of the
in situ hydraulic conductivity function from drainage exper-
iments was developed and tested in the field. The method
permits separate accounting. of measurement error and
model structure error through the incorporation of two
independent noises: observation noise and state noise. The
continuous nonlinear filter was linearized about the state
mean trajectory to obtain a simple description of the time
evolution of the mean stored water and variance propaga-
tion. Unlike current field methods which provide K(8)
relations in the mean from arbitrarily smoothed field obser-
vations, the nonlinear filtering approach provides estimates
of K(#) in the mean and variance based on raw measure-
ments. This is important for uncertainty analysis of water
and solute transport in the field. The nonlinear filtering
approach also allows the quantitative assessment of the
validity of the dynamical equation on a daily basis, based on
the state variance per unit time (Q). In this study, the
estimated state standard deviation per unit time per depth b
was 0.69% d~! moisture content variation, which is small
compared to the neutron probe calibration error (2. 1%). For
a daily time step, the isothermal and nonhysteretic assump-
tions invoked were not inappropriate for this transient field
experiment.
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Fig. 7. K(8) functions estimated by the CGA, theta, flux,
classical, and proposed nonlinear filtering methods. The predicted
standard deviation by the proposed method is also shown.
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APPENDIX A:
OPERATIONAL PROCEDURE TO DETERMINE PARAMETERS
ofF Hyprauric CoNpucTIVITY FUNCTION

Once the water content and hydraulic gradient measure-
ments have been carried out and the variance of the neutron

probe calibration (R) is known, the following procedure can

be used to determine the optimal hydraulic conductivity
parameters A and B, the initial variance P(0), the state
spectral density Q and the time evolution of the standard
deviation P(¢) 2.

1. Set the initial mean (X(0)). = Z(0), the stored water
neutron probe reading at ¢ = 0.

2. Assume initial values for A, B, P(0), and Q (see
discussion below).

3. With [A, B, P(0), Q] known, integrate numerically
(17) and (18) from ¢ = 0 to ¢ = ¢; to determine (X(¢,)) ~ and
P,

4. Using the neutron probe measurement Z(¢;), com-
pute LI = (Z(tl) - (X(tl))_)z/P(tl)—.

5. Compute the Kalman gain K, from (21).

6. Determine the updated values (X(¢,))" and P(z;)*
from (19) and (20) using (X(¢;))~, P(¢;)~ and K.

7. These updated values serve as initial values to (17)
and (18) at 7; and hence steps 3 to 6 are repeated to obtain
Ly, (X(t))* and P(1,) .

8. Carry out the above procedure until time ¢,,. Compute
the objective function L from (24).

9. Try another set of initial conditions [A, B, P(0), Q]
and determine another value for L using steps 3 to 8.

10. Continue step 9 until L cannot be minimized further.
The values computed [A, B, P(0), Q] are the optimal
values.

Since the minimization of L is based on four parameters,
it is computationally inefficient to use a trial and error
approach. Alternatively, one may use a multidimensional
optimization scheme such as the multidimensional simplex
method (see Press et al. [1990, pp. 289-293] for a description
of the algorithm) in order to efficiently search for the
optimum combination of A, B, P(0), and Q that minimizes
the objective function L. This method requires only function
evaluation, not derivatives. A diagram of the computational
scheme showing the implementation of the multidimensional
optimization algorithm is shown in Figure 8.

Note that if a hydraulic conductivity function with more
than two parameters is selected (say, four), then the value of
L is affected by six parameters, and therefore the optimiza-
tion scheme is applied in six dimensions. In this case, other
optimization schemes such as Powell’s method {Press et al.,
1990, pp. 294-301] or the conjugate gradient methods [Press

Objective Function L }

1 STEP (8)

STEPS (1), (10)
P/Iultidimensional Simplex

Optimization Scheme

Extended Kalman Filter
IA, B, Q, P(0)] Prediction-Updating

Steps
STEP (2)

STEPS (3,4,5,6,7)

Computational scheme for determining the optimal param-
eters [A, B, Q, P(0)].

Fig. 8.
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et al., 1990, pp. 305-307] could be more efficient, but require
derivative calculation.

All the methods described above may not provide a global
minimum for L, and hence the starting values for [A;
B, ---, P(0), Q] may become important. It is suggested
that the hydraulic conductivity function also be estimated
using another technique (i.e., CGA, flux, theta, or classical
method) as the starting parameters for the optimization
scheme.

An alternate optimization approach is the use of a simu-
lated annealing algorithm that is not easily ‘‘fooled” by
unfavorable local minima of L [see Press et al., 1990, pp.
331-334].

APPENDIX B:
EXTENSION TO POWER LAw HYDRAULIC
ConpucTiviTy FUNCTION

An alternative derivation of (17) and (18) for a hydraulic
conductivity function of the form K(W) = AW? is presented
[Campbell, 1974]. The procedure in Appendix A is not
altered; however, (17) and (18) are replaced by a new set of
equations given below. Taking the expectation of (9) gives

<dX(t)

oH
———> =— <A<X(z))3>[;}. (B1)

dt

Expanding AX(z) B with a first-order Taylor series expansion
about (X (1)) yields

AX(1)B = AX1)P + ABX(1))® ~ 1(X(r) - (X(9)))
(B2)

Taking the expectation of (B2), and noting that (X() —
X@®) =0,

(AX(1)®)y = AX (). (B3)
Substituting (B3) into (B1),
d{X(2)) 3 g 9H
TR —A(X(2)) (&‘>Z:h, (B4)
which depends on (X(¢)) only.
Similarly for the variance,
PO _ [ At po + BS
dr z | . ! n+Q. (B

In Appendix A; (17) and (18) can be replaced by (B4) and
(BS), respectively.

Acknowledgments. The authors would like to thank Mike Mata
and Jim Maclntyre for their assistance and Ken Tanji and M. Levent
Kavvas for their helpful discussions. This work is supported in part
by the UC Salinity/Drainage Task Force (90-14), Water Resources
Center, and the INCOR cooperative grant.

REFERENCES

Allen, R. G., and D. Segura, Access tube characteristics and
neutron probe calibration, paper presented at National Confer-
ence on Irrigation and Drainage Engineering, Am. Soc. Civ. Eng.,
Durango, Colo., 1990.

Andersson, J., and A. M. Shapiro, Stochastic analysis of one-
dimensional steady state unsaturated flow: A comparison of



1070

Monte Carlo and perturbation methods, Water Resour. Res., 19,
121-133, 1983.

Arnold, L., Stochastic Differential Equations: Theory and Applica-
tions, 228 pp., John Wiley, New York, 1974.

Buchter, B., P. O. Aina, A. S. Azari, and D. R. Nielsen, Soil spatial
variability along transects, Soil Technol., 4, 297-314, 1991.

Campbell, G. S., A simple method for determining unsaturated
conductivity from moisture retention data, Soil Sci., 117,311-314,
1974.

Cuenca, R. H., Irrigation System Design: An Engineering Ap-
proach, 552 pp., Prentice Hall, Englewood Cliffs, N. J., 1989.
Dickey, G., Field calibration of neutron probe gauges: SCS method,
paper presented at National Conference on Irrigation and Drain-

age Engineering, Am. Soc. Civ. Eng., Durango, Colo., 1990.

Fliihler, H., M. S. Ardakani, and L. H. Stolzy, Error propagation in
determining hydraulic conductivities from successive water con-
tent and pressure head profiles, Soil Sci. Soc. Am. J., 40, 830-836,
1976.

Gardiner, C. W., Handbook of Stochastic Methods for Physics,
Chemistry, and the Natural Sciences, 442 pp., Springer-Verlag,
New York, 1990.

Gardner, W. A., Introduction to Random Process With Applications
to Signals and Systems, 546 pp., McGraw-Hill, New York, 1990.

Gardner, W., and D. Kirkham, Determination of soil moisture by
neutron scattering, Soil Sci., 73, 391401, 1952.

Gelb, A., J. F. Kasper, R. A. Nash, C. F. Price, and A. A.
Sutherland, Applied Optimal Estimation, 374 pp., MIT Press,
Cambridge, Mass., 1974.

Haverkamp, R., M. Vauclin, and G. Vachaud, Error analysis in
estimating soil water content from neutron probe measurements,
1, Local standpoint, Soil Sci., 137, 78-90, 1984.

Hewlett, J. D., J. E. Douglas, and J. L. Clutter, Instrumental and
soil moisture variance using the neutron-scattering method, Soil
Sci., 97, 19-24, 1964. }

Jones, A. J., and R. J. Wagenet, In situ estimation of hydraulic
conductivity using simplified methods, Water Resour. Res., 20,
1620-1626, 1984.

Libardi, P. L., K. Reichardt, D. R. Nielsen, and J. W. Biggar,
Simple field methods for estimating soil hydraulic conductivity,
Soil Sci. Soc. Am. J., 44, 3-7, 1980.

Milly, P. C. D., Integrated remote sensing modeling of soil moisture:
Sampling frequency, response time, and accuracy of estimates,
Integrated Design of Hydrologic Network, Proceedings of the
Budapest Symposium, IAHS Publ., 158, 201-211, 1986.

Milly, P. C. D., and Z. Kabala, Integrated modeling and remote
sensing of soil moisture, Hydrologic Applications of Space Tech-

KATUL ET AL.: ESTIMATION OF IN SITU HYDRAULIC CONDUCTIVITY FUNCTION

nology, Proceedings of the Cocoa Beach Workshop, IAHS Publ.,
160, 331-339, 1986.

Mishra, S., and J. C. Parker, Effects of parameter uncertainty on
predictions of unsaturated flow, J. Hydrol., 108, 19-33, 1989.
Parlange, M. B., G. G. Katul, M. L. Kavvas, R. H. Cuenca, and D.
R. Nielsen, Physical basis for a time series model of soil water

content, Water Resour. Res., 28, 2437-2446, 1992.

Parlange, M. B., G. G. Katul, M. V. Folegatti, and D. R. Nielsen,
Evaporation and the field scale soil water diffusivity function,
Water Resour. Res., in press, 1993.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes, 702 pp., Cambridge University
Press, New York, 1990.

Puente, C. E., and R. L. Bras, Application of nonlinear filtering in
the real time forecasting of river flows, Water Resour. Res., 23,
675-682, 1987.

Rose, C. W., W. R. Stern, and J. E. Drummond, Determination of
hydraulic conductivity as a function of depth and water content
for soil in situ, Aust. J. Soil Res., 3, 1-9, 1965.

Schmugge, T. J., T. J. Jackson, and H. L. McKim, Survey of
methods for soil moisture determination, Water Resour. Res., 16,
961-979, 1980. ‘

Shumway, R. H., Applied Statistical Time Series Analysis, 380 pp.,
Prentice-Hall, Englewood Cliffs, N. J., 1988.

Sinclair, D. F., and J. Williams, Components of variance involved in
estimating soil water content changé using a neutron moisture
meter, Aust. J. Soil Res., 17, 237-247, 1979.

Sobezyk, K., Stochastic Differential Equations With Applications
to Physics and Engineering, 395 pp., Kluwer Academic, Hing-
ham, Mass., 1991.

Stone, J. F., Neutron physics considerations in moisture probe
design, paper presented at National Conference on Irrigation and
Drainage Engineering, Am. Soc. Civ. Eng., Durango, Colo., 1990.

Vachaud, G., J. M. Royer, and J. D. Cooper, Comparison of
methods of calibration of a neutron probe by gravimetry or
neutron-capture model, J. Hydrol., 34, 343-356, 1977.

M. V. Folegatti, G. G. Katul, D. R. Nielsen, M. B. Parlange, C.
E. Puente, and O. Wendroth, Department of Hydrologic Science,
Veihmeyer Hall, University of California, Davis, CA 95616.

(Received March 24, 1992;
revised October 21, 1992;
accepted October 28, 1992.)



