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Evaporation and the Field Scale Soil Water Diffusivity Function

MARC B. PARLANGE,! GABRIEL G. KATUL, MARCOS V. FOLEGATTI,2 AND DONALD R. NIELSEN

Hydrologic Science, University of California, Davis

Simplifications to the depth-integrated soil water transport equation lead to an Ito stochastic
differential equation where the evaporation is related to the stored water by the nonlinear soil water
diffusivity function. From the derived equation the diffusivity function was estimated from daily stored
water measurements obtairied at the field scale using nonlinear filtering theory for a period of 100 days.
Comparisons with daily evaporation measured with a sensitive 50-ton lysimeter indicated that the
proposed method may be used to determine soil water diffusivity functions at the field scale under
natural conditions when applied water and evaporation are the primary controlling physical mecha-

nisms in the hydrologic budget.

1. INTRODUCTION

Approximate solutions to the nonlinear diffusion equation
have been demonstrated to be in good agreement with
measurements obtained from laboratéry column experi-
ments of drying soils [Gardner and Hillel, 1962; Gardner and
Gardner, 1969]. In nature, however, the simple initial and
boundary conditions which can be imposed in laboratory
column studies seldom exist. In addition, other variables
play a role in the field such as redistribution of water during
evaporation, random precipitation, hysteresis; salinity, tem-
perature, and nonuniform initial soil moisture profiles [e.g.,
Black et al., 1969; Jury et al., 1978; Lima et al., 1990; Dane
and Klute, 1977]. Major complications also arise due to the
natural variation of soil properties in the field [e.g., Nielsen
et al., 1973; Biggar and Nielsen, 1976].

In this study we investigate the applicability of an approx-
imate solution to the nonlinear desorptive diffusion equation
proposed by Gardner [1962] to compute evaporation as well
as to determine a field diffusivity function from stored water
observations and applied water events in the natural envi-
ronment. There are, of course, a large number of physical
transport mechanisms which are not explicitly acecounted for
in the drying soil model, so that the simplifying assitmiptions
are assumed to generate a sequence of noise disturbances to
the transient flow model system [Zielinski, 1991; Shumway,
1988]. Further, an inherent difficulty in field studies is that
averaging observations at various spatial locations results in
an additional nonstationary noise component that needs to
be accounted for when determining the evaporation or the
diffusivity function using stored water measurements
[White, 1988; Schmugge et al., 1980]. Due to the uncertain-
ties in the model of the physical system, as well as the spatial
variability of observations in the field, application of a
nonlinear filtering theory is suitable since the two sources of
uricertainty can be accounted for in both the evaporation as
well as the diffusivity calculation [e.g.; Milly, 1986; Milly and
Kabala, 1985; Katul et al., 1993; Wendroth et al., 1993].
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Irrigation events were scheduled randomly in time over a
bare soil field. The field site is equipped with a weighing
lysimeter which measures evaporation as well as a network
of neutron probe access tubes in which soil stored water
profile was monitored on a daily basis {Parlange et al.,
19924]. From the measured stored water time series a field
diffusivity function is calculated, and cumulative evapora-
tion predictions are compared against the lysimeter evapo-
ration measurements.

2. THEORY

2.1.  Physical Description

The hydrologic balance in the absence of lateral flow and
negligible drainage is

ds

7 =P,—-E, )}
where S is the depth of stored water between the surface (z
= () and some depth L, L is the depth of uniform wetting,
E, is the evaporation rate; and P, is the rate at which water
is applied (precipitation or irrigation). The evaporation rate
can be calculated using the diffusion equation and assuming
isothermal and homogeneous conditions:

a_e'_a b a0 5

where 8 is the volumetric moisture content and D is the soil
water diffusivity which is a highly nonlinear function of soil
water content [Black et al., 1969; Lisle et al., 1987]. Equa-
tion (2) is the well-known nonlinear diffusion equation.
Various approximate and exact solutions have been obtained
and studied [e.g., Gardner, 1959, 1962; Brutsaert, 1982a,
1979, 1974; Brutsaeit and Weisman, 1970; Parlange et al.,
1992b, 1993, 1987; Parlange, 1971, 1975; Parlange and
Braddock, 1980; Lisle et al., 1987; Heaslet and Alksne,
1961]. Gardner [1962] obtained an approximate solution of
the depth-integrated form of (2) for the falling rate stage of
soil drying and for an arbjtrary diffusivity function,
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where the diffusivity function is given as a function of the
stored water. The derivation is based on the assumption that
once the rate of evaporation is no longer potential [Brut-
saert, 1982b, pp. 237-240; Katul and Parlange, 1992; Jury
et al., 1991, pp. 154-156], the evaporation rate becomes
independent of the initial drying raté (i.e., when the soil
surface is wet) and depends only on the water content of the
soil profile [Gardner and Hillel, 1962]. Also, (3) is not valid
for short time intervals when D(S/L)t/L? < 0.3 [Gardner,
1962]. Combining (1) and (3), the hydrologic balance may be
written as

s a\?
— =P - 3 SD(S). (4)

2.2. State-Space Formulation

~ For an exponential diffusivity function D(S/L) = A exp (B
S/L) [e.g., Reichardt et al., 1972], (4) may be written in
state-space notation as

dX, = dr + vdt, (35)

2L

-\ 2
P, - (—) X, A exp (X, B/L)

where v,dt is a stochastic noise due to uncertainties in the
proposed model. The corresponding discrete observation
equation at time #,(k = 0, 1,2, 3, -+ ) is

Z(1) = X, + v(ta), ©)

where X, is the state variable representing stored water S,
Z,, is the observed amount of stored water at time ¢, and
v, is the observation noise. The state noise (v,d¢) arises due
to the various simplifying assumptions invoked in the model
of the physical system such as neglecting thermal effects,
salinity effects [Lima er al., 1990], clay swelling, hysteresis
[Parlange, 1976; Topp, 1971], redistribution within the soil
depth L, and so forth. Each of the assumptions given here,
as well as all those not included, are too complicated to
assess individually at a point. Furthermore, our interest here
is to study the combined effects of all these assumptions on
the performance of (3) at the field scale. We assume that the
simplifications to the system affect (3) in some random
manner, and their superposition approaches the Gaussian
distribution as suggested by the central limit theorem [Gar-
diner, 1990, p. 37; Kvanli; 1988, pp. 312-340; Clarke and
Disney, 1985, pp. 172-176]. Therefore the state noise is
taken to be a zero-mean Gaussian noise sequence with
spectral density Q [Arnold, 1974, pp. 202-203; Sobczyk,
1991, pp. 60-61; Gelb, 1974, pp. 72-73]. The observation
result is due to both the instrument calibration as well as
spatial averaging and is assumed to be zero-mean Gaussian
with variance R, [Vauclin et al., 1984; Haverkamp et al.,
1984; Parlange et al., 1992aq].

The product v.dr is defined by the Wiener increment
Q(dW,) of the Wiener process W, [Gardiner; 1990, pp.
80-82; Gardner, 1990, pp. 124-125] with a mean of zero and
a covariance function defined by 8(¢r — 7). Q is the variance
per uiit time of the state noisé process (since the Wiener
increment has unit variance) and is an unknown which needs
to be solved [Gelb, 1974, p. 73], and § is the Dirac delta
function. We also assume that (5) satisfies the existence and
uniqueness conditions for the time interval [0, ] [Gardiner,
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1990, p. 94]. Given the random nature of the additive noises,
the state variable X, and the water storage observations
Z(t,) are then random variables in time [Zielinski, 1991;
Puente and Bras, 1987]. The methodology to determine the
evolution of the mean and the variance behavior of X, in
time is discussed next.

2:2.1. Mean behavior of X,. The ensemble average
operator is applied to (5), and after interchanging the differ-
ential and éxpectation operators we obtain

X,
dt

2
P, - (1) A(X, exp BXJL)), (D)

2L

where ( ) denotes the ensemble average operator. The
evaluation of the ensemble average on the right-hand side of
(7) requires calculation of all the moments of X,, thus a
closure problem arises since the evaluation of the first
moment d (X,)/dt requires all moments of X, to be known.

To close the equation we let f(X,) = X, exp (B X,/L) and
then expand f(X,) about {(X,) using the Taylor series

of
FX) =f((X,>) + m (Xt - <Xt>)

82

- _ 2 - 3
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3
Taking the second-order approximation for f(X,), (7) can be
written as

d(X,) a\?
s =P,—|—] A exp (B(X,)/L)

2L
B/ B
Z2+Z<Xt> > )

where Var X, is defined as ((X, — (X,))?). Note that (9) is
not closed since it requires the variance behavior of X,.

2.2.2. Variance behavior of X,. The time evolution of
noisethe variance is given by

1
. [(X,) + 5 Var X,

dV X dX2 dX2
ar t_dt< t) Z{t>,

dt (10)

where the second term on the right-hand side is 2(X,)
d(X,)/dt. Since X, satisfies the Ito stochastic differential
equation defined as dX, = [P, —(#/2L)*AX, exp (BX,/
L)ldt + QdW,, any function g(X,) satisfies the Ito formula

ag(X,) 39(X,) 1 a%(X,)
dt + ——

+= dx,)?,
at ax, T2 ax? (dX)

(11)
where dX, is given by (5) [Gardiner, 1990, p. 95]. Let g(X)
=X ,2 Substituting into (11) and taking the ensemble aver-
age gives

dg(X,) =

X,

d 2y =12 4 2
E<Xt)— Xt-——+Q' (12)

dt

In the above deviation the following properties were used:
(1) 3g(X)/at = 0, (2) AW} = dt, dWPT™Y) = 0, and (3) the
nonanticipating property of the Wiener increment [Gardiner,
1990, pp. 86-88]. Equation (10) may be rewritten as
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dV x,=2l(x, 2 oy HX)
dr AT Lodt X0 dt

Equation (13) is a special case of the general Riccati type
equation originally derived by Kalman and Bucy [1961] for
the covariance matrix of the optimal filtering error. Note that
(13) is not closed since the evaluation of (X,dX,/dt) still
requires all.the moments of X,. Applying a first-order Taylor
series expansion about the mean of the term [(X,dX,/dt)],
taking the ensemble average, and substituting into (13), the
time evolution equation for the variance becomes

+Q. (13)

dV X, =
o ar X, =

m\? BX,

0 ZL) A exp (BX /L)1 + | (14)
Equations (9) and (14) constitute a closed set of predictive
equations for the mean and variance in time, respectively. In
order to integrate (9) and (14), the diffusivity coefficients A
and B, the variance per unit time Q, and some initial
conditions for both the mean (X},) and the variance Var (X;)
need to be specified.

2.2.3. Updating. With an estimate of the state of the
system at time #;, that is, (X(z;))” and Var [X(#;)]~
obtained from (9) and (14), we wish to update the estimates
((X(#))" and Var [X(#,)]") by incorporating the observa-
tion Z(¢;), with a variance R,, when it becomes available at
ty. The updated estimates for the mean and the variance are
solved using

(XN T = (X)) + Ky(Z(tp) — (X(10)))  (15)

Var X(t;) " = Var X(1) "(1 - K,), (16)

where K, is the Kalman gain [Gelb, 1974]. The optimum
choice of K is given by

Var X(¢,) ™

—_— 1
Var X(t;) " + R, an

g =

which defines how to weigh the combination of two sources
of information: (1) predictions and (2) observations [Gelb,
1974, pp. 108-109; Arnold, 1974, pp. 205-209]. Note that if
R, — =, then K; — 0, so that the updated mean and
variance values are simply (X(¢;))” and Var [X(z;)],
respectively; therefore the observations have no influence
on the updating scheme since they are considered com-
pletely unreliable. On the other hand, if R, — 0, then K Phnd
1, and the updated mean and variance values are simply the
observations Z(z;) and R, (=0}, respectively. Equations (9)
and (14) are conservation equations that respect the physics
of the system, while (15) and (16) are statistical corrections
which redistribute stored water in a statistical or nonphysical
manner [Katul et al., 1993]. The prediction-updating equa-
tions (9), (14), (15), and (16) define the structure of the
extended Kalman filter (EKF) (see Figure 1).

2.2.4. Determination of the diffusivity function. The
parameters required to apply the extended Kalman filter
equations are (Xg), Var (X)), A, B, R,, and Q. We assume
that the observation variance R, can be estimated from
spatially averaging the neutron probe readings. This is
discussed in more detail in the experimental section below.
The initial estimate of (X;) is simply taken to be the initial
observation Z, (). The diffusivity parameters A and B as
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Filter Structure

Kalman-Gain

Xo, A B, Qk Update
Va XO Mean, Variance
r( m
+\\\
T ' T teat T
Observation Z(tk)

Variance R

Fig. 1. Structure of the prediction-updating scheme for the ex-

tended Kalman filter.

well as Q and Var (X) are then determined with an iterative
multivariate optimization scheme for minimizing the least
squares objective function (L ;) defined by

Loy = Z [Z(t) — (X(1p) 1%, (18)

where n is the span of the record [Gelb, 1974, p. 103]. Note
that A, B, Q, and Var (X,) appear implicitly in (18);
therefore an iterative optimization scheme is necessary to
minimize L ,; for the various combinations of A, B, O, and
Var (X). In this study the multidimensional simplex method
was used to recursively estimate A, B, O, and Var (X;). A
complete description of the algorithm is presented by Press
et al. [1990, pp. 289-293], and more details regarding con-
vergence and other numerical aspects are presented by
Katul et al. [1993].

3. EXPERIMENT

The experiments were carried out from September 4 to
December 12, 1990, at the University of California, Davis.
Some aspects of the field experimental setup have been
presented by Katul and Parlange [1992] and Parlange and
Katul [1992]. For completeness the field details pertinent to
this study are presented. The soil is a uniform Yolo clay
loam with no layering in the top first meter. The soil physical
properties are described by Buchter et al. [1990]. The site is
equipped with a sprinkler irrigation system which covers a
surface area of 150 m by 130 m with a gross application rate
of 0.5 cm h™! [see Parlange et al., 1992a]. The daily
evaporation rate was measured by a 50-t capacity weighing
lysimeter on a 20-min time step and integrated over the full
day to obtain total daily evaporation. The weighing lysimeter
used in this study is circular in design, with a diameter of 6
m and a depth of 1 m [Pruitt and Angus, 1960]. The
volumetric moisture content is monitored by a Campbell
Nuclear Pacific hydroprobe, model 503. Five aluminum
access tubes, spaced 18 m apart along a transect from west
to east, were drilled using the Soil Conservation Service
method, and the samples obtained were used for the neutron
probe calibration [Parlange et al., 1992a; Dickey, 1990;
Cuenca, 1989]. Neutron probe soundings were taken at 15
cm (assumed to represent stored water between (0-22.5 cm)
and at 30-, 45-, 60-, and 75-cm depths at 0800 (PST) at the
five locations described in Figure 2a. A comparison between
the lysimeter-measured evaporation and evaporation ob-
tained from the neutron probe is presented by Parlange et al.
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Fig. 2a. Location of the neutron probe access tubes (T, i = 1,

2, »++, 5) and the weighing lysimeter.

[19925]. The gross application rate results in net application
rates varying from 0.4 to 0.48 cm h~!. These sprinkle
irrigation rates are gentle enough that no surface runoff
occurs. The total water applied during each irrigation wets a
depth of 15-25 cm. The irrigations have a relatively insignif-
icant influence on the deeper soil profiles. Notice in Figure
2b, where the time variation of the spatially average stored
water at each depth is presented in conjunction with the
applied water, that the deeper soil moisture changes are
small compared to the variability in the top 22.5 cm for the
full study period. Evaporation and the applied water events
are the primary physical processes that affect the stored
water change with time near the land surface. In this study
we set L equal to 225 mm.

The wetting of the 22.5-cm soil horizon is not uniform as
assumed in (3), and L changes with each irrigation. It is
important to note that the neutron probe spatially averages
the stored water within the top 22.5 ¢cm [see Cuenca, 1989,
pp. 183-184]. In part, this is due to the calibration of the
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Fig. 2b. Neutron probe measured stored water time series at each
location in the field.
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Fig. 2c.

neutron probe which relates measured neutron counts to the
average moisture content obtained from soil samples of
22.5-cm length [Parlange et al., 1992a]. Even though the
wetting depth L may be less than 22.5 cm and varies with
each irrigation, the neutron probe is sensitive enough to
measure stored water changes within the top 22.5 cm. The
variation of stored water in time between 0 and 22.5 ¢cm for
each access tube location is displayed in Figure 2c.

4. RESULTS AND DISCUSSION

The nonlinear filtering approach was used to determine the
diffusivity function parameters (A and B), the state variance
per unit time Q, and the initial variance. The (X,) was set
equal to the first mean observation value Z;(¢y) = 57.4 mm
(Julian day equals 245). The observation variance R, as a
function of time was obtained by computing the variance
from the spatially averaged stored water using all of the
access tubes (see Figure 3). Note that the variance of the
field-measured stored water is much larger than the neutron

350
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C
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8
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O~ T T T T T T O T T OO T O O

245 256 267 278 289 306 317 328

Time (days)
—&— Spatial Averaging —— NP Calibration

Fig. 3. Time variation of the observation variance due to spatial

averaging of measured stored water as well as the neutron probe
calibration variance for the top 22.5 cm.



PARLANGE ET AL.:

Stored Water Predictions (mm)

45— . : ; ; . : ;
240 250 260 270 280 280 300 310 320 330 340 350
Days

—— EKF-(2nd) —*— EKF-(1st)y = NP

]

Fig. 4. One-step predictions of the simple extended Kalman
filter (first-order closure EKF-1st, second-order closure EKF-2nd,
and neutron probe spatially averaged observations).

probe calibration variance. The neutron probe calibration
curve variance is (0.021 x 225 mm)? [see Parlange et al.,
1992a]. Using the R, time series and (X(0)) preset to the
first measured value, the multidimensional optimization
scheme calculates the diffusivity parameters to be A =
0.0292 mm?>d~!, B =32.59, Q0 = 18.87 mm? d !, and Var
(Xp) = 5.38 mm?, corresponding to the minimum value of
L. The state variance per unit time (Q) is of the same
order as the neutron probe calibration variance, while the
model uncertainty for stored water prediction on a daily
basis is within the neutron probe noise (see Figure 3).

To investigate the influence of the variance Var X, on the
mean behavior of (X,) we compare the results obtained
using (9) with a simpler first-order closure approximation
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w

X, ( )2
=P, — || A exp BX(D)YLYXX(1)). (19)

dt

2L

Equation (19) was obtained by replacing {(f (X,)) = (X, exp
(BX,/L)) by {X,) exp (B{X,)B/L). Using (19) instead of (9)
and solving the system, the optimum values for A, B, Q, and
Var (X,) are 2.95 mm? d7', 18.82, 9.25 x 1072 mm? d~I,
and 1.75 mm?, respectively. The one-step predictions of
stored water using the first-order approximation (EKF-1),
the second-order approximation (EKF-2), and the neutron
probe stored water measurements are plotted in Figure 4.
The second-order approximation is closer to the actual
measurements than the first-order approximation (Figure 4)
for the day of year interval 310-340; however, the difference
is not very large between the two predictions. The predicted
standard deviation about the predicted mean values is shown
in Figure Sa for both the first-order approximation (19) as
well as the second-order approximation (9). Clearly, the
variance predictions obtained from the first-order closure
scheme are unrealistically small and essentially lie on the
predictions themselves. For standard deviation compari-
sons, Figure Sh compares the spatial standard deviation
about the mean measured stored water and that predicted by
the second-order closure. The second-order standard devia-
tion is within the spatial variability measured in the field.

The cumulative evaporation predictions using the second-
order closure scheme are compared with the lysimeter
cumulative evaporation in Figure 6. The good agreement
found with the second-order (EKF) predictions and cumu-
lative lysimeter measurements (r2 = 0.98, Figure 7) indi-
cates that the estimated diffusivity function provides a good
description of evaporation and soil water transport pro-
cesses. Thus the approximate solution to the transient flow
equation of Gardner may be extended to actual field situa-
tions with variable soil water content.

90
—~—
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85-‘ ]
NP
80_

Stored Water Predictions (mm)

(+/9 STD (EKF-1st)

(+/-) STD (EKF-2nd)

561

50

45 ‘; T L T T T T T T T

240 250 260 270 280 290 300 310 820 330 340 350
Days

Fig. Sa.

Predicted standard deviations about the mean stored water from first- (STD-1) and second-order closure

(STD-2) schemes as well as measured spatially averaged stored water.
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Fig. 5b. Comparison between predicted mean stored water using second-order closure (EKF-2) and measured field
scale stored water. The +1 standard deviation band around the mean values for second-order closure predictions
(=STD EKF-2nd) and measurements (£STD NP) is also shown.

The diffusivity function obtained from the extended filter-
ing scheme (EKF-2), along with laboratory diffusivity mea-
surements carried out using Yolo clay soil by Lima et al.
[1990] based on the procedure proposed by Bruce and Klute
[1956] and Klute and Dirksen [1986], is presented in Figure 8.
The Lima et al. [1990] soil water diffusivity measurements
were sorption type measurements with different sodium
absorption ratios (SAR) and concentrations of NaCl-CaCl,
solution [Cuenca, 1989, pp. 94-95]. Because of the nature of
the laboratory experiments the diffusivity values are gener-
ally higher than the diffusivity values from the field-drying
experiments.

Cumulative Evaporation

160

140

1204

100

80

601

40+

Cumulative Evaporation (mm)

20

AT T T T T T T T T T T T T T T T T T T T T T T T T T I T Iy v T

247 258 | 269 280 291 308
Julian day
{ o WL — EKF

Fig. 6. Comparison of predicted using EKF (second-order clo-
sure) and measured cumulative evaporation as a function of time.

5. CONCLUSIONS

Based on field scale experiments, the application of a
simplified flow theory of drying soils was found to provide a
useful method for obtaining soil water diffusivity function
parameters, that is, water storage and evaporation. Based on
simplifications to the soil water transport equation, evapo-
ration was described as a nonlinear function of the soil water
profile storage. The simple model described the field scale
water transport well on the average and proved to be useful
for field hydrologic budget calculations when the applied
water was known. Due to the model uncertainty and field
scale spatial variability in moisture content, a nonlinear filter
was constructed and applied to data collected over a period

160
E 140/ .
g 120 v
c ++
§ 100
j #
[ 4 +
g 0 E:
P +
w -
i 60 "
2
® 407
3 +
+

§ 204 _’,.-F""

o'“#

0 20 40 60 80 100 120 140 160

Cumulative Evaporation (EKF), mm

r— 11 + Data

Fig. 7. Predicted (EKF second-order closure) versus measured
(weighing lysimeter) cumulative evaporation (r? = 0.98).
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Fig. 8. Comparison between computed soil water diffusivity function using the EKF (second-order closure) for
desorptive conditions and laboratory (sorptive) measurements for various sodium adsorption ratios (SAR) and various

concentrations of CaCl, and NaCl (meq L ~)12

of 99 days to aid in the determination of the diffusivity
function, prediction of the stored water in the top 22.5-cm
soil layer, and prediction of the cumulative evaporation. The
one-step prediction of stored water reproduced the observed
spatially averaged stored water measurements as well as the
cumulative lysimeter evaporation measurements. The state
or model variance per unit time is of the order of the
uncertainty involved in the neutron probe calibration. More
field experiments for different soil textures are required to
further assess the validity of this approach.
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