Biological constraints on water transport in the soil–plant–atmosphere system

Stefano Manzoni *, Giulia Vico, Amilcare Porporato, Gabriel Katul

Department of Civil and Environmental Engineering, Box 90287, Duke University, Durham, NC 27708-0287, USA
Nicholas School of the Environment, Box 90328, Duke University, Durham, NC 27708, USA

A R T I C L E I N F O

Article history:
Available online 30 March 2012

Keywords:
Soil–plant–atmosphere continuum
Transpiration
Vulnerability to cavitation
Water potential
Plant trait
Hydraulic conductivity

A B S T R A C T

An effective description of water transport in the soil–plant–atmosphere continuum (SPAC) is needed for wide-ranging applications in hydrology and climate-vegetation interactions. In this contribution, the theory of water movement within the SPAC is reviewed with emphasis on the eco-physiological and evolutionary constraints to water transport. The description of the SPAC can be framed at two widely separated time scales: (i) sub-hourly to growing season scales, relevant for hydro-climatic effects on ecosystem fluxes (given a set of plant hydraulic traits), and (ii) inter-annual to centennial scales during which either hydraulic traits may change, as individuals grow and acclimate, or species composition may change. At the shorter time scales, water transport can be described by water balance equations where fluxes depend on the hydraulic features of the different compartments, encoded in the form of conductances that non-linearly depend on water availability. Over longer time scales, ontogeny, acclimation, and shifts in species composition in response to environmental changes can impose constraints on these equations in the form of tradeoffs and coordinated changes in the hydraulic (and biochemical) parameters. Quantification of this evolutionary coordination and the related tradeoffs offers novel theoretical tactics to constrain hydrologic and biogeochemical models.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Water transport through soil, vegetation, and the atmosphere typically constitutes the largest hydrologic output in most terrestrial systems. On the one hand, soil properties and plant activity influence the partitioning of rainfall into evapotranspiration, runoff, and deep percolation, thus impacting the regional-scale water balance. On the other hand, transpiration is tightly coupled to the carbon cycle through simultaneous exchanges of CO₂ and water via the stomatal pathway, thus ultimately controlling C uptake by vegetation and affecting long-term C storage in ecosystems. Because of these fundamental roles, water movement through the soil–plant–atmosphere continuum (SPAC) remains a subject of active research in hydrology and plant and agricultural sciences, and a key topic in any assessment of elemental cycling in natural and agro-ecosystems, under current and future climate scenarios. Moreover, because terrestrial plants are first users of precipitated water, they directly affect the recharge of water systems: as such, their impact on water resources cannot be ignored.

Quantifying water movement through the SPAC requires understanding water dynamics in three main compartments (soil, plant tissues, and atmosphere) and through the interfaces and connections among them (soil–root interface and leaf surface). The driving force for water movement is provided by the gradient in total water potential between the soil and the atmosphere [1,2], which causes liquid water to move from the soil into the plant and then to evaporate and diffuse from the mesophyll and epidermal cells through the stomata (also directly through the cuticle) and into the atmosphere [3]. By means of guard cell movements, which alter the size of the stomatal aperture, plants are able to regulate water losses through transpiration at the most effective location, i.e., where the steeper water potential gradient develops between the nearly saturated stomatal cavity and the atmosphere [4]. The flux of liquid water through the soil and plant tissues takes place under high tension, and is generally framed within the context of cohesion–tension theory [5–9].

Quantitatively describing this water flux is complicated by incomplete knowledge of microscopic-scale processes, the large spatial heterogeneity of the transporting medium (e.g., root and branch architecture), and the temporal variability of the external drivers [10,11]. Because of these intrinsic complexities, simplified models that capture the macroscopic dynamics through mass balance equations are a viable alternative to a detailed representation of the micro-scale processes. Following this simplified approach and in the context of cohesion–tension theory, the flux of liquid water is often described by an electrical analogy, where water encounters a series of resistances (or conductances) from the soil
to the leaves together with decreased gravitational potential with elevation \([2,4,6,12–14]\). A price to pay for such simplified macroscopic view of the dynamics within the SPAC is a high degree of nonlinearity in conductances with respect to water potential. In fact, conductances in both the soil and the plant tissues are known to be nonlinearly related to water potential (or water saturation; see Fig. 1): such nonlinearities are caused by air entry and reduction of liquid water films in soils \([12,15,16]\) and the occurrence of cavitation in the xylem \([9,17]\). Similarly, stomatal conductance declines nonlinearly as water potential decreases, besides changing as a function of other environmental and biochemical factors \([18–21]\).

Much work on the soil–plant system has focused on describing water fluxes when a given set of plant characteristics are known, and where the time scales are those imposed by soil drying, stomatal control, and cavitation development (sub-hourly to the growing season). However, the various components of the SPAC respond to environmental changes also over longer time scales, at which individuals acclimate and grow, and species composition changes \([22,23]\). Thus, especially in the face of climatic changes, it is becoming necessary to assess how these hydraulic features are altered at longer time scales in both individuals and at the ecosystem level. In this contribution, such two time scales are exploited exploiting their large time scale separation. First, a simplified framework for a short-term description of water flow is presented, assuming static plant traits. Spatially explicit representations are simplified to provide lumped ‘macroscopic’ equations primarily intended to illustrate the role of mechanisms and plant characteristics. These lumped equations are applicable and testable using quantities commonly measured at the macro-scale (e.g., soil cores, leaves, and stem segments, up to field-scale flux measurements), which are becoming readily available through published global databases (e.g., TRY, \([24]\), FLUXNET, \([25]\)). Next, coordinated changes of plant hydraulic characteristics in response to environmental variations during ontogeny or succession are explored. From a practical perspective, such coordination between traits necessarily implies a set of constraints that can be formulated as linkages between the various elements of the soil–plant hydraulic apparatus, and between the hydraulic and photosynthetic machinery of the plant itself. From the point of view of plant function, coordination among plant conductances improves the hydraulic efficiency along the SPAC \([26–30]\), and the scaling of water supply with leaf photosynthetic capacity optimizes resource use \([31–35]\). Plant form also results from evolutionary tradeoffs between structural and functional constraints \([36]\), leading to optimal branching networks and xylem vessel size \([34,37,38]\). After discussing how these optimality criteria are used to relate the key hydraulic characteristics of plants to each other, the review concludes with future research priorities necessary for implementing such biological constraints on the dynamics of water in the SPAC.

2. Governing equation for water transport through the SPAC

As a starting point, horizontal homogeneity is assumed so that the focus is only on vertical transport of water from the soil to the atmosphere. To describe water transport within a common framework, total water potential is employed as a natural unit to

Fig. 1. General scheme of the soil–plant–atmosphere continuum (SPAC): illustration of the mass balance in the continuous and lumped representations and constitutive equations for water flow through soil (subscript \(S\)), plant xylem (subscript \(P\)), and atmosphere (subscript \(A\)). Top, stomatal conductance (\(g_{L}A\) for well ventilated conditions) as a function of leaf water potential at two contrasting vapor pressure deficits (\(D\)) in Nerium oleander \([178]\); middle, water retention curve (black) and vulnerability to cavitation (gray) of Tapiria guianensis branches \([63]\); bottom, water retention and hydraulic conductivity data and curves (Eqs. (5) and (9)) for a sandy loam soil (black and gray, respectively) \([46]\).
characterize water content in the different compartments of the SPAC (Fig. 1). It is the continuity in this water potential that creates a ‘continuum’ within the soil–plant–atmosphere system, despite the phase change from liquid water to vapor within the leaves [2,4,11]. The initial focus is on time scales ranging from sub-hourly to the growing season so that the transport equations can be effectively treated as quasi-stationary in the atmospheric compartment (i.e., the atmospheric scalars equilibrate rapidly with fluxes and sources/sinks), while the temporal dynamics of soil and plant water are explicitly accounted for. At these scales, all plant hydraulic parameters can be assumed constant for a given plant species or functional type and ecosystem. The spatial domain considered here goes from just below the root-zone depth all the way to the atmospheric surface layer above the canopy, with liquid water moving from the soil pores to the roots, and then through plant tissues to the leaves, where it evaporates and diffuses into the atmosphere. Symbols are defined in Fig. 1 and Table 1.

2.1. Soils

Water transport in unsaturated soils is conventionally described by the combination of mass conservation and Darcy’s law for unsaturated conditions [12,15,16]. Conservation of mass for water in an unsaturated medium characterized by soil moisture \(\theta_s \) (and assuming z is positive upwards) is given as

\[
\frac{\partial \theta_s}{\partial t} = - \frac{\partial F_s}{\partial z} - \rho_E \dot{E}_s \tag{1}
\]

where the sink term \((-\rho_E \dot{E_s})\) represents water uptake by roots, \(\rho_E \) is the root area density \((\partial \text{RA/I}/\partial z\), where \(\text{RA} \) is the root area index), and \(\dot{E}_s \) is the uptake rate per unit root area. Typically, \(\rho_E \) declines monotonically with soil depth [39], whereas \(\dot{E}_s \) depends on the water potential difference between the soil and the root and may thus be positive (water uptake) or negative, when water taken up in deep, moist layers is redistributed to the drier surface soil [40,41]. The vertical water flux in the soil is given as

\[
F_s = -k_s(\theta_s) \frac{\partial H}{\partial z} \tag{2}
\]

where the total head is \(H = \psi_s(\rho_{sat})^{-1} + z \), \(\psi_s \) is the soil matric potential, \(\rho_{sat} \) is the specific weight of water (the product of water density, \(\rho_w \) and gravitational acceleration, \(g \)), and \(k_s \) is the soil hydraulic conductivity. Combining Eqs. (1) and (2), and expressing water content in terms of water potential \(\psi_s \) results in [42,43]

\[
C_s(\psi_s) \frac{\partial \psi_s}{\partial t} = \frac{\partial}{\partial z} \left[k_s(\psi_s) \left(\frac{1}{\rho_{sat}} \frac{\partial \psi_s}{\partial z} + 1 \right) \right] - \rho_E \dot{E}_s \tag{3}
\]

where \(C_s(\psi_s) = d\theta_s/d\psi_s \) is the specific soil moisture capacity [16]. Hydraulic conductivity and water retention curves are typically obtained from empirical relationships [44–49]. The simplest formulations are given as power laws

\[
\psi_s = \psi_{sat} \left(\frac{\theta_s}{n} \right)^{-b} \tag{4}
\]

\[
k_s(\psi_s) = k_{sat} \psi_s \frac{\psi_{sat}}{\psi_s}^{2(1+1/b)} \tag{5}
\]

where \(k_{sat} \) and \(\psi_{sat} \) are respectively the soil hydraulic conductivity and water potential near saturation, \(n \) is the soil porosity, and \(b \) is the exponent of the water retention curve, which is related to pore architecture [50,51].

Upon integration of Eq. (1) in the vertical direction over the entire rooting depth \(Z_R \), a vertically-averaged soil moisture value, \(\bar{\theta}_s = Z_R^{-1} \int_0^{Z_R} \theta_s \, dz \), is obtained (where the overbar denotes the vertically-averaged quantities). Based on this vertically averaged soil moisture, a lumped representation of the soil water balance can be derived as [52–54],

\[
Z_R \frac{\partial \bar{\theta}_s}{\partial t} = R(t) - Q(\bar{\theta}_s, t) - E_S(\bar{\theta}_s) - E(\bar{\theta}_s) - L(\bar{\theta}_s) \tag{6}
\]

where \(R \) is the rainfall input, \(Q \) is the surface runoff, \(E \) is the transpiration flux \((E = \int_0^{Z_R} \rho_E \dot{E}_s \, dz)\), \(E_S \) is the water evaporation from the soil, and \(L \) is the drainage flux below \(Z_R \) (all fluxes in the soil water balance are expressed on a per unit ground area basis).

The flow of water from the soil to the root occurs due to the water potential gradient maintained by the transpiration stream.

Table 1

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>Shape parameter of the vulnerability curve</td>
<td>–</td>
</tr>
<tr>
<td>(A_{run})</td>
<td>Maximum photosynthetic rate</td>
<td>(\mu \text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>b</td>
<td>Exponent of the water retention curve</td>
<td>–</td>
</tr>
<tr>
<td>(C_s)</td>
<td>Soil or plant hydraulic capacitance</td>
<td>(\text{Pa}^{-1})</td>
</tr>
<tr>
<td>(d)</td>
<td>Fine root diameter</td>
<td>m</td>
</tr>
<tr>
<td>(D)</td>
<td>Vapor pressure deficit</td>
<td>(\text{mol m}^{-1})</td>
</tr>
<tr>
<td>E</td>
<td>Transpiration per unit ground area</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(E_L, E_R)</td>
<td>Leaf- and root-area specific transpiration rates</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(E_s)</td>
<td>Soil evaporation</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(k_{sat})</td>
<td>Hydraulic conductivity</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(k_{sat, \text{sp}})</td>
<td>Sapwood-leaf-specific hydraulic conductivity</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(k_{t, \text{sp}})</td>
<td>Turbulent diffusivity</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(F_s)</td>
<td>Vertical water flux</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>g</td>
<td>Gravitational acceleration</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(\delta_{z, b})</td>
<td>Leaf boundary layer conductance</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(\delta_{c, t})</td>
<td>Hydraulic conductance of compartment i or between i and j</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(g_c)</td>
<td>Stomatal conductance</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(g_c)</td>
<td>Effective canopy conductance</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(h)</td>
<td>Canopy height</td>
<td>m</td>
</tr>
<tr>
<td>H</td>
<td>Total head</td>
<td>m</td>
</tr>
<tr>
<td>L</td>
<td>Water leakage below the rooting zone</td>
<td>m</td>
</tr>
<tr>
<td>(\text{LAI})</td>
<td>Leaf area index</td>
<td>m (^2)</td>
</tr>
<tr>
<td>(\text{LAI}_a)</td>
<td>Path length between bulk soil and fine roots</td>
<td>m</td>
</tr>
<tr>
<td>(f_a)</td>
<td>Atmospheric mixing length</td>
<td>m</td>
</tr>
<tr>
<td>(M_w, M_o)</td>
<td>Molar mass of water ((M_w = 0.018)) and air ((M_o = 0.029))</td>
<td>(\text{kg m}^{-1})</td>
</tr>
<tr>
<td>(n)</td>
<td>Soil porosity</td>
<td>(\text{m}^3 \text{m}^{-3})</td>
</tr>
<tr>
<td>Q</td>
<td>Surface runoff</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>R</td>
<td>Rainfall</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(\text{RAI})</td>
<td>Root area index</td>
<td>(\text{m}^2 \text{m}^{-2})</td>
</tr>
<tr>
<td>(\text{SAI})</td>
<td>Sapwood area index</td>
<td>(\text{m}^2 \text{m}^{-2})</td>
</tr>
<tr>
<td>(\delta_{b})</td>
<td>Relative volumetric water content</td>
<td>(\text{mol m}^{-3})</td>
</tr>
<tr>
<td>(\delta_{c})</td>
<td>Turbulent Schmidt number</td>
<td>–</td>
</tr>
<tr>
<td>(T_L)</td>
<td>Leaf temperature</td>
<td>°C</td>
</tr>
<tr>
<td>(U)</td>
<td>Horizontal wind speed</td>
<td>(\text{m s}^{-1})</td>
</tr>
<tr>
<td>(W_1)</td>
<td>Water vapor concentration</td>
<td>(\text{mol m}^{-1})</td>
</tr>
<tr>
<td>(z)</td>
<td>Vertical coordinate (positive upwards)</td>
<td>m</td>
</tr>
<tr>
<td>(Z_R)</td>
<td>Rooting depth</td>
<td>m</td>
</tr>
<tr>
<td>(\rho_{l, s})</td>
<td>Leaf and root area densities</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(\rho_{l, s})</td>
<td>Leaf area density</td>
<td>(\text{mol m}^{-2} \text{s}^{-1})</td>
</tr>
<tr>
<td>(\psi_s)</td>
<td>Volumetric water content</td>
<td>(\text{mol m}^{-3})</td>
</tr>
<tr>
<td>(\psi_i)</td>
<td>Water potential</td>
<td>Pa</td>
</tr>
<tr>
<td>(\psi_{50})</td>
<td>Water potential at 50% loss of conductivity</td>
<td>Pa</td>
</tr>
</tbody>
</table>
In this lumped representation, water uptake is thus described by diffusion through the soil around the absorbing area of the root, as \(E = g_{s, R}(\overline{\psi} - \overline{\psi}_R) \). As a first approximation, the soil–root conductance per unit ground area, \(g_{s, R} \) (m s\(^{-1}\) Pa\(^{-1}\)), can be calculated as \([55]\)

\[
g_{s, R} = \frac{k_S(\overline{\psi}_S)}{\rho_D g_{s, R}}
\]

(7)

where \(k_S(\overline{\psi}_S) \) is the soil hydraulic conductivity (m s\(^{-1}\); Eq. (5)), \(\ell_{s, R} \) is the characteristic length between the bulk soil and the root surface (m), and \(\rho_D g \) converts the conductance units to m s\(^{-1}\) Pa\(^{-1}\). The distance \(\ell_{s, R} \) can be estimated in different ways depending on root geometry \([56–58]\). Assuming parallel cylindrical roots of average diameter \(d_R \), uniformly distributed over the depth \(Z_R \), and with a total root area index \(RAI \) (m\(^2\) of root surface per m\(^2\) of ground), the characteristic length \(\ell_{s, R} \) is obtained as \(\ell_{s, R} = \sqrt{d_R Z_R RAI^{-1}} \). Eq. (7) shows the effects of key geometrical parameters (in terms of rooting depth and density of fine absorbing roots, which in turn change depending on plant type and climate), separately from the ones due to soil moisture and soil hydraulic conductivity. \(RAI \) and \(Z_R \) vary across biomes (Table 2), and depend on the depth of the bedrock as well as soil and plant type. The root diameter \((d_R) \) is instead more constrained, ranging from around 0.2 mm in grasses to 0.6 mm in trees \([59,60]\).

2.2. Plant tissues

Water transport in the plant tissues (from the root surface to the leaf cuticle and inner surface of the stomatal cavity) can be treated, in analogy with flow in unsaturated soils, as driven by capillary and gravitational gradients \([61,62]\) as

\[
C_f(\psi_f) \frac{\partial \psi_f}{\partial t} = \frac{1}{\rho_f g} \frac{\partial}{\partial z} \left(k_f(\psi_f) \left(\frac{1}{\rho_f g} \frac{\partial \psi_f}{\partial z} + 1 \right) \right) - \rho_e E_c.
\]

(8)

where \(\psi_f \) is the water potential inside the plant tissue, \(k_f \) is the plant hydraulic conductivity, the capacitance \(C_f(\psi_f) = d\psi_f/d\psi_f \) links tissue saturation level and water potential (as before), \(\rho_e \) is the leaf area density (\(\text{m}^2\) \(/ \) \(\text{m} \)), and \(E_c \) the transpiration per unit leaf area. Note that fluxes and conductivities are here expressed on a ground area basis in analogy with Eq. (3). While the solution of Eq. (8) is affected by the geometry of the plant conductive tissue (branch and root architecture), for simplicity here we neglect these geometric features and focus on the mean properties of the whole plant. Also, the traits controlling water flow \((k_f \) and \(C_f) \) as well as sapwood and leaf area indices \(\text{SAI} \) and \(\text{LAI} \), respectively) are assumed to be representative of the whole plant community, so that Eq. (8) effectively characterizes the mean behavior of the ecosystem.

The capacitance \(C_f \) has been estimated experimentally from the slope of the water retention curves in stems \([63,64]\) and leaves \([65–70]\). Alternatively, \(C_f \) can also be estimated from time series analysis of transpiration and sap flow \([71]\). In general, the xylem hydraulic conductivity \(k_f(\psi_f) \) decreases nonlinearly with xylem water potential due to cavitation and embolism formation \([9,17]\). The shape of \(k_f(\psi_f) \), commonly referred to as cavitation vulnerability curve, depends on plant species, although some general patterns can be found, as discussed in Section 3. Vulnerability curves have sigmoidal shape and can typically be described by Weibull functions or similar functional dependencies, such as

\[
k_f(\psi_f) = k_f,\text{max}\ [1 + (\psi_f/\psi_{so})^a]^{-1},
\]

(9)

where \(k_f,\text{max} \) is the maximum xylem hydraulic conductivity (m s\(^{-1}\)), \(a \) is a shape parameter, and \(\psi_{so} \) represents the leaf water potential at 50% loss of conductivity. For laminar flow in a circular vessel, the Hagen–Poiseuille law predicts that hydraulic conductivity should scale as the fourth power of the radius \([89]\). In reality, however, the xylem is composed of vessels of various sizes connected by inter-vessels pits, making it complicated to characterize the microscopic hydraulic features of the conducting tissue. As a consequence, it is often more convenient to measure conductivity at the macroscopic scale (i.e., from stem segments), from which \(k_f,\text{max} \) can be computed in different ways depending on the available data \([9]\).

If leaf-specific conductivity \(k_f,\text{leaf} \) (kg m\(^{-1}\) MPa\(^{-1}\) s\(^{-1}\)) is known, the maximum conductivity \((m s^{-1}) \) can be calculated as \(k_p,\text{max} = k_f,\text{leaf} SAI/10^4 \); when the sapwood-specific conductivity \(k_{w,\text{sap}} \) (kg m\(^{-1}\) MPa\(^{-1}\) s\(^{-1}\)) is provided, \(k_p,\text{max} = k_{w,\text{sap}} SAI/10^4 \). Fig. 2 shows how these hydraulic parameters \((k_p,\text{max}, \psi_{so}, a) \) and the shape factor \(a \) in Eq. (9)) vary across plant functional types (PFT) and biomes. It should be noted that Eq. (9) is an approximate representation of tension effects on conductivity, which neglects possible hysteretic behavior, caused by delayed recovery of hydraulic conductivity upon pressurization and repair of embolized tissues \([72,73]\).

To reduce Eq. (8) to a lumped model, a homogenous conductive tissue of length \(h \) (a measure of the average hydraulic length within the plant, in turn linked to canopy height; e.g., \([74]\) is assumed along with a homogeneous \(\text{SAI} \). Furthermore, all transpired water is assumed to exit the plant at the upper boundary (according to a big-leaf approximation), where tissue water potential is equal to leaf water potential \(\psi_f \). Accordingly, Eq. (8) can be integrated vertically to obtain the plant tissue water balance per unit ground area as

\[
\frac{dh\psi_f}{dt} = g_{s, R}(\overline{\psi}_S - \overline{\psi}_R) - E.
\]

(10)

Assuming steady state conditions \((d\psi_f/dt = 0, \text{i.e., changes in water stored in the plant tissues are small compared to the total transpiration flux}) and considering a mean water flux in the xylem \((F_I = -k_f(\overline{\psi}_f)\Delta H/h))\), transpiration can be obtained from the continuity condition as a function of plant conductance and water potential difference between the root and the leaf \([4,20,27,65,74,75]\).

\[
E = g_{s, L}(\overline{\psi}_f - \overline{\psi}_L - \rho_e g h).
\]

(11)

where \(g_{s, L}(\overline{\psi}_f) \) (m Pa\(^{-1}\) s\(^{-1}\)) is the macroscopic root-to-leaf conductance, which equals the average \(k_f(\overline{\psi}_f)/\rho_e g h \) in this lumped representation. Not only Eq. (11) is used in hydrologic models, but it also often employed in coupled biogeochemical-hydrologic models to link the water potentials of the soil and the canopy, which in turn affects photosynthesis \([56,76,77]\).

Eqs. (8) and (10) are horizontally averaged (thus neglect branching and root architecture) and interpreted as representative of the whole plant community. From the point of view of plant hydraulics, the changes in conductive tissue area and vessel geometry at the internodes from the main stem to the petioles and leaves may be important. Shinozaki et al. \([78]\) proposed a ‘pipe model’, where each pipe supports structurally and functionally a unit of leaf area. This model implies that the cross sectional area of conductive tissue should be conserved along the plant \([37]\, a law which was first

Table 2

<table>
<thead>
<tr>
<th>Biome</th>
<th>RAI (m² m(^{-2}))</th>
<th>Z(m)</th>
<th>Z(_{max}) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tundra</td>
<td>5.2</td>
<td>0.11</td>
<td>0.5</td>
</tr>
<tr>
<td>Boreal forest</td>
<td>4.6</td>
<td>0.17</td>
<td>2.0</td>
</tr>
<tr>
<td>Temperate conifer forest</td>
<td>9.4</td>
<td>0.41</td>
<td>3.9</td>
</tr>
<tr>
<td>Temperate deciduous forest</td>
<td>9.8</td>
<td>0.29</td>
<td>2.9</td>
</tr>
<tr>
<td>Temperate grassland</td>
<td>79.1</td>
<td>0.17</td>
<td>2.6</td>
</tr>
<tr>
<td>Cropland</td>
<td>-</td>
<td>0.25</td>
<td>2.1</td>
</tr>
<tr>
<td>Mediterranean shrubland and woodland</td>
<td>11.6</td>
<td>0.27</td>
<td>5.2</td>
</tr>
<tr>
<td>Tropical dry forest</td>
<td>6.3</td>
<td>0.25</td>
<td>3.7</td>
</tr>
<tr>
<td>Tropical grassland/savanna</td>
<td>42.5</td>
<td>0.35</td>
<td>15.4</td>
</tr>
<tr>
<td>Tropical evergreen forest</td>
<td>7.4</td>
<td>0.26</td>
<td>7.3</td>
</tr>
<tr>
<td>Desert and semi-desert</td>
<td>5.5</td>
<td>0.39</td>
<td>9.5</td>
</tr>
</tbody>
</table>
predicted by Leonardo Da Vinci. Other approaches assume that plants evolved to maximize hydraulic transport for a given carbon investment in vessel walls, i.e., Murray’s law applied to plant tissue [34,79]. In such a case, assuming laminar flow in the vessels, the third power of the vessel radius would be conserved along the branching network. It can be shown that the same arguments leading to Murray’s law reproduce the Da Vinci’s law if the velocity distribution within the vessels is assumed to be uniform. These relationships affect the hydraulic properties of an individual at a given time. However, when modeling stand development over annual to decadal time scales, the geometry of the system changes (within size) structure are important, as in some natural, highly heterogeneous systems. In these cases, the derivation of Eq. (10) would require the proper accounting of these additional sources of spatial (and functional) variability, either through an individual- or functional type-based approach (possibly involving competition) [53,81], or by assuming realistic distributions of parameters and integrating the water transport equations over the parameter space (thus neglecting competition). Heterogeneity in plant size can be accounted for by considering allometric relationships linking resource constraints to the density of individuals and their size and age structure [38,84–86].

2.3. The plant–atmosphere interface

In general, transpiration rate is controlled by a driving force imposed by the atmospheric water demand (driven by solar radiation and air temperature) and the actual water availability in the stomatal cavity, as well as by stomatal conductance, which regulates water losses from the leaves [2]. Simple demand-controlled descriptions of transpiration rate (e.g., [87,88]) may be a good approximation when leaf conductance is not limiting (i.e., under well watered conditions), while stomatal control becomes important under dry conditions. At the leaf level, transpiration per unit leaf area (typically expressed in mol m$^{-2}$ s$^{-1}$) can be described by Fickian diffusion [3,89],

$$E_L = g_{L,A}[w_L(\psi_L, T_L) - w_A(T_A)],$$ \hspace{1cm} (12)

where $w_L(\psi_L, T_L)$ and $w_A(T_A)$ are water vapor molar concentrations (related to the specific humidity $q = w_M/w_B$) in equilibrium with the leaf water potential at the leaf temperature T_L and in the bulk atmosphere (at temperature T_A), respectively (molar fluxes can be multiplied by $M_w = 0.018$ kg mol$^{-1}$ and divided by ρ_w to obtain units consistent with Eqs. (3) and (8)). The water vapor difference $w_L(\psi_L, T_L) - w_A(T_A)$ represents the driving force for evaporation from the leaves and corresponds to the atmospheric water pressure deficit (D) when saturation conditions exist inside the stomatal cavity (i.e., $\psi_L = 0$) and leaf temperature is close to the air temperature (i.e., $D = w_{L,sat}(T_A) - w_A(T_A)$). The vapor pressure difference is determined by compound effects of synoptic-scale dynamics and local-scale water and energy balances. Within canopies, humidity is impacted by transpiration and the atmospheric condition above the canopy, whereas solar radiation alters the leaf energy balance and hence T_L. The effect of solar radiation in turn depends on the leaf surface properties (determining the absorbed radiation) and its size and shape (affecting heat exchange), as well as the atmospheric conditions (e.g., wind speed; see for details [1,65,90]).

In Eq. (12), $g_{L,A}$ is the leaf–atmosphere conductance, computed from the series of stomatal (g_s) and leaf boundary layer (g_{bl}) conductances, i.e., $g_{L,A} = g_{s,bl}(g_s + g_{bl})$. In turn, g_{bl} can be calculated for any position inside the canopy as a function of mean wind speed and leaf characteristic size, often using flat-plate boundary layer theory [90]. Stomatal conductance responds to environmental fluctuations by decreasing as atmospheric vapor pressure deficit increases and leaf water potential becomes more negative.

Fig. 2. Median values (with bar indicating first and third quartiles) of (A) sapwood-specific hydraulic conductivity, $k_{P,sap}$, (B) leaf water potential corresponding to 50% loss of conductivity, ψ_{50}, and (C) shape factor for the vulnerability curve, a (Eq. (9)), for major plant functional types and climates (data sources are listed in Table S1 in the online Supplementary materials).
while it increases with light availability [18,19,21,91–93]. To describe these effects, empirical models based on regression of observations [20] or on the observed correlation between photosynthesis and stomatal conductance [94,95] have been developed, providing an empirical link between the plant water and C economy in the form \(g_{s} \sim A(c_{n}D) \), where \(A \) is the net photosynthesis, \(c_{n} \) the atmospheric \(CO_{2} \) concentration, and \(f(D) \) a monotonically decreasing function of the vapor pressure deficit \(D \). More mechanistic approaches detail the mechanical movement of guard cells in response to changes in the local pressure [21,96–98], or account abscisic acid (ABA) [58,97,99]. These mechanistic models are not yet backed up by sufficient observational data to parameterize them across species and environmental conditions. Approaches based on the postulate that stomata regulate water losses to maximize photosynthesis for a given amount of available soil water represent a viable alternative, thereby eliminating the need to describe the details of the mechanical movement or the signaling mechanism generating the movement of a stoma [100–105]. These optimization models often result in compact analytical expressions for \(g_{s} \), as a function of environmental variables (vapor pressure deficit, atmospheric \(CO_{2} \) concentration, light and water availability), making them suitable for leaf- to ecosystem-scale applications [106–108]. Using this approach, the scaling of optimal \(g_{s} \) with vapor pressure deficit, \(CO_{2} \) concentration, light availability, and photosynthetic capacity \(g_{s} \sim A(\sqrt{c_{n}D}) \) emerges as a result of the optimization hypothesis, lending support to the idea that stomatal responses co-evolved with the plant C economy.

2.4. Atmosphere

For a stationary, high Peclet number and horizontally homogenous turbulent flow and in the absence of subsidence, the mean mass balance for water vapor within a layer of thickness \(dz \) inside the canopy volume can be expressed as

\[
\frac{\partial F_{A}}{\partial Z} = \rho_{A}E_{L},
\]

(13)

where the vertical variation of the mean turbulent flux \(F_{A} \) (mol m\(^{-2}\) s\(^{-1}\)) is balanced by the local source term \(\rho_{A}E_{L} \) (leaf transpiration, see Eq. (12)). Eq. (13) can be solved with a prescribed evaporation flux from the soil and a fixed atmospheric water vapor concentration above the canopy as boundary conditions. The most primitive approximation to the turbulent flux can be obtained through a first order-closure scheme given as

\[
F_{A} = -k_{t} \frac{\partial \mu_{A}}{\partial Z},
\]

(14)

where the turbulent diffusivity \(k_{t} \) can be described as

\[
k_{t} = \frac{\nu}{Sc} \frac{\partial U}{\partial Z},
\]

(15)

with \(Sc \) being the turbulent Schmidt number and \(\nu_{t} \) the effective mixing length for turbulence within the canopy, which is in turn controlled by the canopy height and the centroid of the drag force [108,109].

The driving force for transpiration, the vapor pressure difference at the leaf surface \(w_{l}(T_{l},T_{L}) - w_{n}(T_{n}) \) (Eq. (12)), is also linked to the leaf energy balance and the water vapor concentration profiles (from Eq. (13)). Eqs. (12) and (13) can be further coupled with a mass balance for atmospheric \(CO_{2} \) concentration, resulting in a complete model of canopy-atmosphere gas and energy exchanges [83,107,108,110,111]. Moreover, a number of schemes have already been proposed to replace Eq. (15) using higher-order closure principles [111], which are advantageous when the scalar flux production term is not locally balanced by its dissipation rate [112].

By vertically integrating Eq. (13), a lumped representation of canopy fluxes can be derived as [41,108,113],

\[
F_{A}(h) = F_{A}(0) + \int_{0}^{h} \rho_{A}g_{L,A}(w_{L} - w_{n})dz,
\]

(16)

where \(w_{n} \) depends on turbulent transport inside the canopy and \(g_{L,A} \) is primarily controlled by light availability. Assuming that gradients in \(g_{L,A} \) in the canopy are much stronger than gradients in \(w_{n} \) and that the driving force can be approximated by the vapor pressure deficit \(D \), canopy-scale transpiration (in mol m\(^{-2}\) s\(^{-1}\)) can be calculated from Eq. (16) as

\[
E = F_{A}(h) - F_{A}(0) = g_{L}D.
\]

(17)

where \(g_{L} = \int_{0}^{h} \rho_{A}g_{L,A}dz \) is the effective canopy conductance. Eq. (17) represents the big-leaf approximation of the evaporative demand from the canopy, which is met by the water supply described by Eq. (10). While Eq. (13) allows a more physically-based representation of canopy dynamics, Eq. (17) recovers the diffusion equation formalism and because of its simplicity may be more suitable for large-scale applications [113]. The main limitation of Eq. (17) is the loss of a clear physical and physiological meaning for the canopy conductance \(g_{L} \), where aerodynamic and stomatal conductances cannot be easily separated.

3. Coordination of hydraulic features and plant function

Because of the tight coupling between transpiration and \(CO_{2} \) uptake, it is reasonable to expect that vegetation evolved, adapting to the most typical hydro-climatic conditions, toward a coordinated system that effectively transports water and nutrients, while creating the greatest opportunity for carbon uptake and biomass survival, growth, and reproduction. Different aspects of this coordination between the biotic and abiotic components of the ecosystem in relation to the above framework are discussed below focusing on macroscopic plant properties appearing in the lumped description of the SPAC. The observed patterns in these plant parameters across ecosystems and plant functional types (PFT) are thus interpreted as resulting from evolutionary-scale dynamics leading to optimal plant form and function.

3.1. Coordination of plant hydraulic traits within the SPAC

Following the electrical analogy, water transport through the SPAC is controlled by a series of conductances that link the soil to the leaves (Fig. 1). The relative magnitude of these conductances and how they change as a function of water potential determine both the water flux and the pressure gradient through the plant. In electric circuit networks with resistances in series and with nearly stable potential differences, the current (or flow) is larger when the overall resistance is equally partitioned among the different components. In this way, no component constrains the flow more than the others and the overall efficiency is improved. This is also the case in plants, where the acceptable range of water potential drops is limited to avoid damages due to cavitation or excessive leaf heating. Hence, it is reasonable to hypothesize that the maximum conductances (under well-watered conditions) in different parts of the SPAC are inter-related or coordinated, such that a relatively more efficient stem water transport system corresponds to hydraulically-efficient leaves and higher maximum stomatal conductance [29]. In turn, a hydraulically-efficient system provides a competitive advantage because it allows exploiting the available water resources faster than the competing species [53,114–116]. Experimental evidence supports this maximization hypothesis, showing strong correlations between liquid- and vapor-phase (stomatal) conductances [26–28,30,33,117–119] and among leaf...
lamina, petiole, and whole plant conductances [120]. A review of published values of maximum stomatal conductance, leaf-specific xylem conductivity (\(k_{P,leaf}\)), and maximum liquid-phase leaf conductance (\(g_L\)) showed strong correlations across plant growth forms and climates (Fig. 3). The correlations are all strongly significant (\(P < 0.001\), despite some variability due in part to time and method of measurement) except for the weaker relationship between \(k_{P,leaf}\) and \(g_L\), for which, however, only few data points are available (\(P = 0.0073\)).

Moreover, the maximum transpiration rate that can be sustained by the xylem is consistent with measured maximum rates of transpiration, indicating a general coordination between conductances in the water supply system (root to leaf) and at the leaf–atmosphere interface where the water flux is controlled by atmospheric demand and stomatal conductance [29,121–123]. The emergence of this coordination can be illustrated using Eq. (11), where transpiration increases as the leaf water potential becomes more negative. At the same time, however, declining potentials in the xylem cause cavitation and limit further increases in \(E\) [29,124]. As a consequence, \(E\) is maximized at intermediate \(\psi_L\). This maximum \(E\) can be shown to scale linearly with \(k_{P,\text{max}}\) and \(\psi_{50}\) [122], where \(\psi_{50}\) decreases with increasing conductivity (Fig. 5). As a result, the maximum \(E\) scales nonlinearly with \(k_{P,\text{max}}\) (with exponent lower than one), so that, using Eq. (12) and assuming a prescribed vapor pressure deficit, we obtain the nonlinear scaling between \(k_{P,\text{max}}\) and \(g_{s,\text{max}}\) (Fig. 3).

3.2. Tradeoffs between hydraulic traits during drought

When water becomes limiting, however, both stomatal and xylem conductances are reduced with respect to well-watered conditions. A pressure drop induced by cavitation causes stomatal closure by altering the pressure balance between guard and epidermal cells [18,21,97]. However, stomatal closure may be initiated earlier in response to accumulation of ABA that is released by the roots when soil and root water potentials decline [58,99,125]. Increased stomatal sensitivity to low water potential due to ABA reduces transpiration, thus preventing catastrophic run-away cavitation, which may result in severe consequences for the whole plant [22,75,99,121,123]. As a result of these reductions in conductances, midday transpiration decreases as drought progresses (Fig. 4a). In some species, the control is primarily through stomatal closure, i.e., the plant water potential at 90% stomatal closure corresponds to a relatively minor loss of xylem conductivity due to cavitation. In other species, such as Fraxinus excelsior (Fig. 4b), substantial cavitation may be acceptable and hence stomatal closure is delayed. Based on these different responses and the sets of traits that cause them, plants can be classified as ‘cavitation-risk averse’ (stomatal closure prevents cavitation maintaining a relatively high midday \(\psi_L\)) and ‘cavitation-risk tolerant’ (stomatal closure and xylem loss of conductivity occur in a more synchronous way) resulting in water transport maximization [8].

Cavitation-risk averse species tend to be isohydric, while the risk tolerant species often show anisohydric behavior [92,99,117,126]. Due to stomatal closure, isohydric species lower the risk of hydraulic failure at the expense of decreased C gain during water stress, possibly leading to C starvation and mortality. In contrast, anisohydric species are more likely to face hydraulic failure before C starvation occurs [22]. As shown in Fig. 4c, conifers tend to be more risk-averse than angiosperms, although inter-specific variability is large within both groups (conifers also tend to have lower absolute values of \(g_s\) as shown in Fig. 3). In fact, not
only conifer xylem is more cavitation-resistant (Figs. 2 and 5), but also conifers close their stomata well before cavitation (the water potential at 90% stomatal closure is less negative than the water potential at 10% loss of cavitation, see Fig. 4c). These different behaviors may be related to the higher sensitivity of the evolutionary younger angiosperm stomata, which allow precise regulation close to catastrophic cavitation [127]. Also, different behaviors may emerge in response to the expected water availability, with less conservative water use in species adapted to consistent water supply during the growing season [22,128,129], or in species that face a relatively short (albeit ‘uncertain’) growing season. This is the case of deciduous species from temperate forests, which transpire and photosynthesize more (per unit ground or canopy area) than conifers at the same site, but over a shorter growing season [130,131]. The level of cavitation-risk tolerance is also apparent in the xylem vulnerability curve, which represents the safety-efficiency tradeoff of the plant conductive tissues. Large hydraulic conductivity is associated with low wood density [132,133] and, more importantly, large vessels with a high number of relatively wide inter-vessel pits that tend to cavitate first as \(\psi \) decreases \((k_P \propto r^4, \text{as from the Hagen–Poiseuille relationship}) \) [134,135]. Accordingly, traits linked to cavitation resistance \((\psi_{50}) \) tend to correlate inversely with maximum hydraulic conductivity \((k_{P,sap}) \) and their variability are observed in climates with strong seasonality (tropical dry and Mediterranean climates), where high efficiency is needed to sustain transpiration during the wet season, while cavitation resistance becomes important at the beginning of the dry season, in particular for evergreen species. Despite strong inverse relationship between \(\psi_{50} \) and \(k_{P,sap} \) across PFTs and climates, other water use strategies often mask this relationship across species, including phenological responses to drought as well as different stem capacitance and stomatal regulation [23,137–139].

3.3. Coupling of carbon and water economies

Photosynthesis is intrinsically related to water losses through stomata because diffusion regulates the transport of both CO\(_2\) and water vapor in and out of leaves [149,150]. Stomatal closure in response to changes in the environment thus reduces the supply...
of CO2 and ultimately photosynthesis. Hence, stomata have to balance water savings and carbon uptake demands. Following these economic considerations, Cowan and coworkers hypothesized that stomata act to optimally control gas exchange, so to maximize photosynthesis for a given amount of available soil water [100,151]. The emergent scaling between optimal gs and A described in Section 2.3 is indicative of this strong C–water interaction.

Because of the coupling between carbon and water fluxes it is expected that the maximum photosynthetic rate (Amax) increases proportionally to the hydraulic conductances in the SPAC to guarantee that large water losses are effectively balanced by strong carbon gains [28,30–33,35,55]. This coordination between hydraulic and biochemical systems results in a strong correlations between Amax and any measure of water transport efficiency, ranging from leaf to stem conductances (Fig. 3). Such coordination seems to occur not only across species, but also in individuals over time [152,153]. Water flow from the xylem of the leaf veins to the evaporation sites probably causes the larger pressure drop before evaporation because water can only diffuse in the mesophyll tissue. As a consequence, the spatial structure of leaf veins has evolved to supply water in the most efficient way (i.e., minimizing the average distance between the vein and the evaporating site), while limiting unavoidable construction costs [28,154]. These evolutionary tradeoffs led to strong coordination between traits describing leaf venation and C uptake, with higher vein densities occurring in leaves with larger photosynthetic capacity per unit leaf mass and lower leaf mass-to-area ratio [155,156].

The safety-efficiency tradeoff in water transport can also be interpreted as a result of optimal balance between the C gain from leaves that are efficiently supplied by relatively light, but cavitation-sensitive xylem [157], and the C cost of dense wood that is less hydraulically-efficient, but cavitation resistant [132]. Moreover, denser wood has typically lower capacitance and hence provides less water (per unit volume) at times of high demand, with respect to less dense, high capacitance wood [63,64,158]. Hence, lighter wood requires lower C investments and has higher storage capacity, while providing less protection to hydraulic failure. The overall C benefit from these different strategies will ultimately depend on the occurrence of stress events and on the cumulative gas exchange achieved, which are both intrinsically linked to the stochasticity of the rainfall events.

3.4. Whole plant perspective: growth patterns and SPAC

A further degree of freedom to adapt so as to exploit limited resources is provided by the flexibility in allocation between shoots (and thus photosynthesizing tissues) and roots (for water and nutrient uptake), as well as in architectural characteristics (e.g., branching network, canopy shape, root distribution). The hypothesis of balanced development has spawned several models of biomass allocation and growth [159–161]. Among these, allometric theory predicts that water flow in the xylem of individual plants scales with the 3/4 power of total mass, due to the nature of the branch network [37]. Because water supply fuels gross photosynthesis (by means of coupled water–CO2 transport through stomata and by nutrient uptake), and whole-plant photosynthesis is proportional to the amount of leaves, the theory predicts that total leaf mass should also scale with the 3/4 power of plant mass [84]. Further assuming isometric scaling of plant height and rooting depth leads to the prediction that leaf biomass scales as the 3/4 power of stem and root biomass, in agreement with observations [162], thus supporting the hypothesis of coordinated growth of roots and shoots.

Regarding branching patterns, different approximations have been developed to describe their occurrence, ranging from the so-called pipe model, where the number of conduits does not change with rank in the network [78,163], to Murray's law, where the number of conduits increases with rank [34]. Murray's law is based on the idea that tissues transporting fluids under laminar flow conditions should conserve the third power of conduit radius at internodes to minimize flow resistance and construction costs. This optimal design would allow a competitive advantage and thus would be selected during evolution, as appears to be the case in vascular plants [34]. Root architecture has been studied in much less detail, though a number of studies have shown its importance for hydraulic re-distribution in soils [40,41,164].

The question of growth pattern is further complicated by existing environmental conditions, which may alter the balance of root-to-shoot growth in favor of preferential belowground allocation when water or nutrients are most limiting, or to aboveground structures when light is most limiting. For example, if rooting depth and RAI could be adjusted freely to optimally capture soil water, they would be significantly impacted by rainfall patterns and soil type. Shallow roots would allow exploiting light rainfall events, while deep roots are more suitable to tap deep soil layers that are recharged seasonally or after large rainfall events. The rooting depth that optimally balances investment costs and the need to exploit available water would increase from arid to mesic conditions, but then decrease in wet climates where water is not limiting and shallow roots are sufficient [116,165]. These theoretical predictions are supported by observations worldwide [39,59,166]. Moreover, higher values of RAI are typical of grasslands and savannas, where substantial cover by herbaceous species occurs, and is typical of plants that have lower average rooting depth, possibly to improve intensive water use in the surface soil layer (Table 2). Furthermore, when considering woody species, RAI is highest in temperate climates, while it is lower in both xeric and boreal climates, reflecting lower total biomass in these systems and possibly an economic strategy. In fact, investment costs of high RAI would not be balanced by the relatively small increase in water capture in dry systems with infrequent rain, while such investments are generally not needed in ecosystems that are not water-limited.

Other optimality criteria involving competing water–carbon–nutrient economies can be also hypothesized at the scale of the plant. A large investment in N allows large C uptake at the expense of water losses through transpiration. When water is a limiting factor, however, it becomes necessary for the plant to optimize water use to avoid damage during drought, and hence maximize productivity in the long-term [57,80,167]. Over larger scales, this optimization criteria likely shape vegetation patterns and competition among PFTs [53,114].

4. Challenges and future directions

Despite the progress in understanding the processes controlling water transport through the SPAC, several lines of research remain open regarding both short-term water transport and longer-term changes of vegetation traits in response to climatic variability and change. In particular, further research is needed to mechanistically bridge scales – from xylem pores to the hydraulic traits at the macroscopic scale, and from individuals to communities and ecosystems.

4.1. Scaling up xylem functioning

With regard to the short timescale, the most pressing question is perhaps how micro-scale processes can be represented at the macroscopic scale. While scaling up pore-scale processes in soils has been the subject of much research, little progress has been
made in deriving vulnerability curves from vessel-scale processes, except for a few recent efforts. To progress, a stochastic representation of vessel and inter-vessel pit sizes e.g., [135] could be coupled to a cavitation propagation equation [124], and further linked to the C economy of the plant [157]. Current approaches, however, still neglect vessel network architecture and thus the redundancy of flow paths – a critical hydraulic feature of the xylem. Still subject to debate are also the mechanisms that allow plants to recover from embolism [168–170]. Notably, progress is needed to clarify how recovery time and repair costs depend upon the severity of the cavitation episode and what are the long-term consequences for the whole plant conditions e.g., [35,73].

Soil–root interfaces (at scales spanning μm to mm) are also still poorly characterized. An effective and rigorous way of deriving a macroscopic description based on a representative elementary volume for the soil–root system would improve coupled soil water transport and root uptake models and bridge the gap between ‘microscopic’ models of water uptake by individual roots and ‘macroscopic’ approaches consistent with Eq. (3) [42].

4.2. Scaling up to ecosystems

Several challenges also remain when evaluating ecosystem-level water and C fluxes over longer time scales, especially regarding trait coordination and change. The climatic changes expected during the next decades (in particular, intensified precipitation and longer droughts; e.g., [171]) will likely cause shifts in species composition and trigger acclimation responses in the autochthonous populations. For example, plant xylem acclimates to dry conditions by becoming less conductive, but more cavitation-resistant [23,128,148,172], and plant communities may shift towards more drought-adapted species [22,173]. In some cases, different trait combinations may result in similar functional responses due to their inherent tradeoffs (as in Fig. 5), or energy limitation may be more important than plant characteristics, yielding comparable overall fluxes [174,175]. In other cases, species composition may play a more important role and thus alter ecosystem functioning under climatic changes or after disturbance events [131]. Hence, species-specific information is required to capture these changes. However, such level of detail is not always available, so that ‘effective’, community-level descriptions might be more suitable for wide-scale applications. Mathematical models (coupled to ecosystem-level flux measurements) could improve the quantification of these dynamics by exploring the effects of different community assemblies on the overall fluxes.

Current global climate models employ a functional-type representation of vegetation [176], where each PFT is characterized by a set of traits. A trait-based description of vegetation could represent a more flexible alternative [24,139], where climatic changes may trigger acclimation and alter plant traits, thus affecting ecosystem function (instead of species or PFTs per se). This trait-based modeling approach could benefit from a more expansive approach to quantifying causes and outcomes of trait coordination, now possible thanks to recently developed databases (e.g., Table S1 for plant hydraulic traits and TRY initiative for a much wider spectrum of traits, [24]). Plant characteristics in mathematical models could be better constrained by these empirically-based relationships. From a theoretical perspective, predicting trait coordination would yield insights to explain the observed functional and structural patterns as well as their interactions. To proceed in this direction, C, nutrient, and water economies of species or functional groups need to be coupled, thus quantifying plant function and performance from both a biogeochemical and hydrologic perspective. Considering simultaneously all these factors allows defining optimal strategies of resource use that can eventually be linked to the traits and how they correlate. This approach has proved fruitful to predict the general coordination among maximum photosynthesis, leaf lifespan, leaf mass-area ratio, and nitrogen concentration, based on the optimization of water transport [155], and the tradeoffs between xylem safety and efficiency [157]. Within this framework, hydro-climatic stochasticity can not be neglected as it may represent an important constraint over successional- to-evolutionary time scales [36,53]. Thus, the major challenge is now to define optimality criteria and the corresponding optimal states that account for tradeoffs in acquisition and use of resources, as well as for environmental and climatic variability.

Acknowledgements

This work was supported in part by the United States Department of Energy (DOE) through the Office of Biological and Environmental Research (BER) Terrestrial Carbon Processes program (NICCR Grant: DE-FC02-06ER64156) and Terrestrial Ecosystem Science program (DE-SC0006967), the US Department of Agriculture (USDA Grant: 2011-67003-30222), and the National Science Foundation (NSF-CBET-1033467, NSF-EAR-10-13339, NSF-AGS-1102227, NSF-DEB-1145649). We also thank Danielle A. Way, Andrew J. Guswa, and two anonymous reviewers for their constructive comments.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.advwatres.2012.03.016.

References
