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Abstract Connections between the spatial and temporal statistics of turbulent flow, and
their possible convergence to ensemble statistics as assumed by the ergodic hypothesis, are
explored for passive scalars within a rod canopy. While complete ergodicity is not expected
to apply over all the spatial domain within such heterogeneous flows, the fact that canopy
turbulence exhibits self-similar characteristics at a given depthwithin the canopy encourages a
discussion on necessary conditions for an ‘operational’ ergodicity framework. Flows between
roughness elements such as within canopies exhibit features that distinguish them from
their well-studied classical boundary-layer counterparts. These differences are commonly
attributed to short-circuiting of the energy cascade and the prevalence of intermittent von
Kármán vortex streets in the deeper layers of the canopy. Using laser-induced fluorescence
measurements at two different depths within a rod canopy situated in a large flume, the
spatio-temporal statistical properties and concomitant necessary conditions for ergodicity of
passive scalar turbulence statistics are evaluated. First, the integral time and length scales
are analyzed and their corresponding maximum values are used to guide the construction
of an ensemble of independent realizations from repeated spatio-temporal concentration
measurements. As a statistical analysis for an operational ergodicity check, a Kolmogorov–
Smirnov test on the distributions of temporal and spatial concentration series against the
ensemble was conducted. The outcome of this test reveals that ergodicity is reasonably valid
over the entire domain except close to the rod elements where wake-induced inhomogeneities
and damped turbulence prevail. The spatial concentration statistics within a grid-cell (square
domain formed by four corner rods) appear to be less ergodic than their temporal counterparts,
which is not surprising given the periodicity and persistence of von Kármán vortices in the
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flow field. Also, a local advection velocity of dominant eddies is inferred using lagged cross-
correlations of scalar concentration time series at different spatial locations. The computed
probability density function of this advection velocity agrees well with the laser Doppler
anemometry measurements for the same rod canopy.

Keywords Canopy turbulence · Ergodicity · Integral scales · Scalar dispersion ·
von Kármán streets

1 Introduction

The ergodic hypothesis was first introduced by Boltzmann in 1871 in the study of equilib-
rium statistical mechanics. It states that in the course of sufficiently long time, the phase
trajectory of a closed system of interacting particles described by a macrostate (distribution
of microstates), revisits (or passes arbitrarily close to) every phase point in the manifold
(Landau and Lifshitz 1980). In other terms, the time average of some observable settles to
an equilibrium value when the system ‘forgets’ its initial state, and becomes equivalent to
a true (ensemble) average. In the context of turbulent flows, the ergodic hypothesis is often
invoked when inquiring about the statistics of an ensemble from routinely measured temporal
statistics in field or laboratory settings. In its strictest definition within the statistical fluid
mechanics community, the hypothesis states that the temporal/spatial statistical moments
converge to those of an ensemble of statistically stationary/homogeneous flows when the
sampling is sufficiently long for the flow to experience all possible independent realizations
(Monin and Yaglom 1971; Stanisic 1985). Hence, when the flow establishes a statistically
steady state, temporal and/or spatial statistics of a measured turbulence quantity such as con-
centration converge to those of an ensemble by averaging over intervals much longer than
the integral scales, provided the corresponding auto-correlation function decays to zero at
finite lags (and remains so).

Numerous studies have examined the validity, or lack thereof, of the ergodic hypothesis
across a wide range of turbulence problems, both theoretically and experimentally. Support
for the hypothesis has been reported using direct numerical simulations (DNS) of the Navier–
Stokes equations for statistically stationary and homogeneous flows (DaPrato and Debussche
2003; Galanti and Tsinober 2004). In laboratory studies, the ergodic hypothesis has also been
explored using velocity time series measurements in a channel with repeated independent
yet similar experiments (Lesieur 1990), while Mattingly and Weinan (2001) and Constantin
et al. (2013) addressed its theoretical validity on the Navier–Stokes equations in a stochastic
setting. In fieldmeasurements, Higgins et al. (2013) and Chen et al. (2014) recently examined
the minimum requirements for ergodicity of atmospheric water vapor measurements over a
land-lake interface and that of eddy correlationfluxmeasurements, respectively.Nevertheless,
the lack of simultaneous temporal and spatial realizations, especially inside canopies, largely
limits proper testing of the validity of the ergodic hypothesis. Time averaging thus remains
the common framework when reporting the statistical properties of atmospheric turbulence
with spatial patterns retrieved using Taylor’s frozen turbulence hypothesis (Taylor 1938)
whenever applicable (Higgins et al. 2012).

Turbulence near and within roughness elements such as canopies are drawing increased
interest given their prevalence in biosphere-atmosphere studies of gas exchange (e.g. CO2

and water vapour transport) (Finnigan 2000), ecological studies of seed and pollen spread
(Nathan et al. 2002), and air quality studies such as the transport of ammonia (Sutton et al.
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1995), to name a few. Turbulent flows within canopies exhibit features that distinguish them
from their classical boundary-layer counterpart. The work that the flow exercises against the
foliage drag produces turbulent kinetic energy (TKE) by wakes that leads to a spectral short-
circuiting of the energy cascade (Finnigan 2000; Poggi et al. 2006, 2008). Previous flume
and flow visualization experiments showed that the organized vortical motion within the deep
layers of a rod canopyoriginate fromquasi two-dimensional vonKármánvortex streets (Poggi
et al. 2004a, b, 2011). The shedding frequency of these vortices is encoded in the classical
dimensionless Strouhal number (St = f dr/u), where f is the vortex shedding frequency, dr is
a characteristic length scale of the obstacle (here rod diameter of the model canopy), and u is
themean streamwise velocity component. The impact of the aforementioned canopy-induced
phenomena on the spatio-temporal statistics and possible ergodic behaviour of passive scalar
statistics remains unexplored and frames the scope of this work. The usefulness of such
a discussion is evident when interpreting the statistical moments of turbulence quantities
measured in laboratory and field campaigns as representative of theoretical ones, and to the
subsequent comparison of such measurements with simulations or models. In essence, the
gap between the temporal measurements at a point and the spatio-temporal extent of the
equations of motion governing fluid flows requires an understanding of the conditions under
which the two converge.

To this end, within-canopy laser induced fluorescence (LIF) measurements of dye concen-
tration are used to examine aspects of the ergodic structure of concentration statistics at two
different heights. The image processing of LIFmeasurements provides a practical framework
for the concept of ‘similar experiments’ where spatial and temporal fields are used as proxies
for multiple experiments repeated under similar external forcing. Spatial realizations at a
time and temporal realizations at a point are discussed through the corresponding correlation
functions, integral scales and statistical independence in comparison to characteristic time
and length scales associated with physical phenomena such as the size and frequency of
von Kármán vortex streets, and the mean return period of sweeping events from the canopy
top. The Kolmogorov–Smirnoff statistical test is used to evaluate the degree of convergence
of each of the spatial and temporal statistics to those of an ensemble of realizations con-
structed from statistically quasi-independent events. This evaluation determines whether the
constructed ensemble distribution represents a transposition of temporal to spatial statistics
and vice versa. Such a transposition is also explored by computing a local eddy velocity that
communicates within-canopy temporal realizations at a given location to downstream loca-
tions but with finite time lag. Using cross-correlation analysis of concentration time series
at two points in the canopy space, a local advection velocity can also be retrieved and com-
pared to published laser Doppler anemometry (LDA) measurements conducted for the same
rod-canopy set-up (Poggi et al. 2004a).

2 Experimental Facilities

The data used in this work were collected from an open channel water-flow experiment
with canopy-like roughness introduced as vertical rods mounted to the bottom wall of the
channel. The flume configuration, the rod canopy, the acquisition of the scalar concentration
time series, and the data processing are presented elsewhere (Poggi et al. 2002, 2004a, b,
2008; Poggi and Katul 2006). In brief, the experiment was carried out in a large rectangular
constant head recirculating channel, 18 m long, 0.9 m wide, and 1 m deep with glass side
walls to permit the passage of laser light. The rod canopy was composed of vertical stainless
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steel cylinders 0.12m tall (= h) and 4×10−3 m in diameter (= dr), arrayed in a uniform square
pattern at np = 1072 rods m−2, where np is the canopy density defined as the number of rods
per unit ground area. Using h, dr , and np, the effective frontal area index is 0.81 m2 m−2.
The large np resulted in Cd ≈ 0.3 comparable to those reported for agricultural crops and
dense forests (Katul et al. 2004).

The local instantaneous dye concentration in a plane parallel to the channel bottom was
measured using the LIF technique. The concentration measurements were conducted by (i)
injecting Rhodamine 6G as a tracer, (ii) providing a horizontal light sheet between two lines
of rods using a lens system, and (iii) recording a time sequence of images. The light source
was provided by a 300 mW continuous fixed wavelength ion-argon laser (Melles Griot mod.
543-A-A03), and the images were recorded at a frequency of 30 Hz using a colour CCD
(charge-coupled device) video camera (Poggi and Katul 2006; Poggi et al. 2006). Digital
movies with a spatial resolution of 170 × 10−6 m were collected at two levels: z/h = 0.2
and z/h = 0.5, where z is the vertical distance referenced to the channel bottom. Three 72-s
video sequences for each of the two depths were then used to compute instantaneous two-
dimensional planar concentration. Throughout, the heights z/h = 0.2 and z/h = 0.5 are
referred to as ‘deep’ and ‘mid-canopy’ layers. In addition, themeasurementswere collected at
bulk canopy Reynolds numbers, Re∗ = u∗h/ν of 6000 and 12,000, where u∗ = (−u′w′)1/2
is the friction velocity measured at z/h = 1, primed quantities are turbulent excursions,
and the overbar indicates time averaging over the sampling duration. The results for the
two Reynolds number were similar and the subsequent analysis uses only the Re∗ = 6000
dataset.

It is noteworthy that, while the sampling resolution is much higher in space than in time
(around 15 times), the temporal sample size is much longer and thus time statistics should
have higher convergence. Figure 1 shows the ensemble-averaged temporal and spatial spectra
of the measured concentration series (z/h = 0.2), where the latter was transformed from a
wavenumber to frequency domain by the measured spatially- and temporally-averaged LDA
velocity reported elsewhere (Poggi et al. 2004a). Clearly, the spatial spectrum resolves much
higher frequencies than its temporal counterpart but the two have similar limited ‘scaling’ at
the overlap frequency. Hence, the ensemble of spatio-temporal realizations of concentration
measurements covers a wide range of turbulent scales that are not necessarily overlapping
for most frequencies.

3 Methodology

Because canopy flows are inhomogeneous in z, it is unlikely that ergodicity applies in a
manner similar to previously studied cases obtained for flows with homogeneous coordinates
(DaPrato and Debussche 2003; Galanti and Tsinober 2004). However, connections between
temporal and spatial statistics for such a complex flowmay still be explored for some distance
from theboundary (i.e. in a plane parallel to themeanflowat a given z/h), and at someposition
far from canopy elements. This is the main guiding principle for the analysis conducted here.
Two different aspects of scalar concentration statistics are analyzed at each z/h: one that is
based over the entire planar flow field at a certain moment in time t ; and another for one
position in space over a long period of time. If canopy scalar turbulence is ergodic, these
two types of statistics should converge. Lack of convergence can also be viewed as evidence
against the ergodic hypothesis (operational or otherwise strict) within canopies. However,
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Fig. 1 Ensemble-averaged temporal (171 × 221 time series) and spatial (221 × 2100 spatial series) power
spectra of concentration fluctuations. The spatial spectrum was transformed into a corresponding temporal
spectrum by the relation f = uk, where k is the wavenumber (inverse of spatial resolution), u is the average
streamwise velocity component (≈0.1ms−1) and f is the frequency (s−1). The linear (log scale) fits for
parts of the spectra are also shown to emphasize the overlapping regions ( f −1). The f −3 scaling of the
spatial spectrum reported in Poggi et al. (2011) and the Kolmogorov (−5/3) scaling are also shown. The high
frequency component of the spatial spectrum reveals the effect of pixel size (high spatial resolution)

convergence of these two types of statistics cannot be used as evidence for the validity of
ergodicity as such convergence is only necessary but not sufficient.

The LIF images cover one rod spacing in the streamwise direction. Hence, the spatio-
temporal measurements are confined to what is referred to hereafter as the ‘one-cell
configuration’—a square domain between four corner rods. This one-cell configuration
occurs periodically in uniformly-spaced dense canopies, and closely resembles a domain
with homogeneous coordinates for the flow field. Within this configuration, once the flow
impinges on such a cell, wakes are generated behind the upstream rods and unless disrupted
by a sweeping event from the canopy top, tend to grow in size until experiencing collisions
with their downstream rods counterpart. It is this alternating character of persistent and spa-
tially coherent von Kármán vortex streets and sweeping events that the current work seeks to
examine as to how it alters the concentration statistics in general and necessary conditions for
‘operational’ ergodicity in particular. The spatial dimension of the planar images is 171×221
(longitudinal× lateral) locations sampled 2100 times (around 72 s). While the same exper-
iment is repeated three times at each of the two depths (z/h = 0.2 and z/h = 0.5), our
analysis showed no significant differences among the replicates and the subsequent discus-
sion illustrates the results from one experimental run at each of the two z/h.

The expansive dataset (array of 171 × 221 × 2100) can be viewed as two configura-
tions under similar external flow conditions (uniform water level, steady flow rate, fixed rod
arrangement, and comparable initial conditions for dye releases). The first is a series of spatial
realizations at each moment in time (i.e. 2100×221 spatial series each of length 171 points),
while the second is 171 × 221 spatial locations that sample a concentration time series for
about 72 s.
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When discussing integral (temporal or spatial) scales of the flow, concentration excursions
(C ′) from the local (temporal or spatial) mean are used instead of concentration differences
(�C) so as to compare with well-established length and time scales associated with canopy
turbulence and eddy sizes. Also, the maximum integral length and time scales are used
as surrogates for delineating statistical independence of spatial and temporal realizations.
While not necessarily exact, the choice of the maximum integral time scale (out of 171 ×
221 available scales) to separate temporal events and maximum length scale (out of 221 ×
2100 available scales) to separate spatial events may warrant independence. Such maximum
values of length and time scales are 5–10 times their corresponding average value. When
evaluating several operational aspects of ergodicity (mainly the Kolmogorov–Smirnoff test
for distributions), it is more convenient to consider spatial or temporal differences in LIF
concentration (�C) (Galanti and Tsinober 2004) instead of concentration excursions from
an arbitrarily set average for both configurations. The choice of concentration difference
(in time or space) rather than absolute concentration excursions eliminates some potential
effects of non-stationarity and inhomogeneity in the mean concentrations and dominant
low frequency/wavenumber scales. Also, LIF measures light intensity rather than absolute
concentration and any minor differences in background light intensity across experiments
might become less relevant to concentration differences. The differencing operation itself
tends to partly ‘de-correlate’ the series (at least less correlated than C ′) (Katul et al. 2001),
which then reduces its integral scales when constructing ensembles and convergences of
spatial and temporal averaging to ensembles.

Figure 2 shows typical 2-D images at the two depths during periods where the flow
is dominated by von Kármán vortices along with a time series of ∂C/∂t ≈ �C/�t and
u∂C/∂x ≈ u�C/�x , where u is the measured planar- and time-averaged streamwise
velocity component at the twodepths (0.08 and0.1ms−1 at z/h = 0.2 and z/h = 0.5, respec-
tively) presented elsewhere (Poggi et al. 2011). Here,�t = (1/30) s and�x = 170×10−6 m.
The probability density functions (p.d.f.) of these series (see bottom panel of Fig. 2) exhibit
a wider spread, particularly in time, relative to a standard Gaussian distribution. The discrep-
ancies between the two distributions can be attributed to the use of the mean velocity rather
than the time series of the local velocity, where the former tends to mask extreme events
and therefore misses the tails in the distribution, yet constitutes the basis of Taylor’s frozen
turbulence hypothesis.

4 Results and Discussion

To address the study objective, the spatio-temporal ensemble at the deep and mid-canopy
layers must first be constructed from sub-sampling the differenced concentration (�C) series
at each z/h so as to ensure replications of independent realizations.Next, the temporal p.d.f. at
each location (and z/h) and the spatial p.d.f. at each moment in time (and z/h) are compared
against the ensemble. It is for this reason that the integral time and length scales of C are
first computed and discussed, followed by the construction of the ensembles of �C at each
z/h. Comparisons between spatial or temporal statistics of �C to the constructed ensemble
p.d.f. are also presented based on the Kolmogorov–Smirnoff test. The transposition of spatial
statistics to their temporal counterparts is further explored (at each z/h) by computing local
eddy velocity that communicates time realizations at a given location to downstream locations
but with finite time lag. Using cross-correlation analysis, a local advection velocity was
retrieved and its statistics are compared to LDA velocity measurements conducted for the
same configuration and z/h as reported elsewhere (Poggi et al. 2004a).
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Fig. 2 Top panel 2D images of the flow field at the two depths (z/h = 0.2 and 0.5) during quiescent von
Kármán vortex events. White circles denote rod locations. Middle panel Typical normalized time series of
�C/�t (red colour) and u�C/�x (black). Bottom panel The normalized p.d.f. of the time series shown in
the middle panel with a Gaussian p.d.f. shown for reference (blue line)

4.1 Integral Scales

The integral time and length scales (τ and l) of C ′ over the spatio-temporal domain are
shown in Fig. 3. For both z/h = 0.2 and z/h = 0.5, there is longer temporal memory near
the obstacles compared to all downstream locations. Also, longer memory prevails in the
deeper layer when compared to its mid-canopy counterpart. The maximum correlation in
time was 3.2 and 1.4 s in the deep and mid-canopy layers, respectively. This result is not
surprising given that the vortex streets in the deeper layer persist longer because they are
less frequently disrupted by sweeping events from aloft. The latter is evident in the top panel
of Fig. 3, where the integral time scale in the deep layer is comparable to h/u∗, but always
smaller in the mid-canopy layer. The timescale h/u∗ (≈2.67 s) is a measure of periodicity of
sweeping events from the canopy top. To the contrary, integral length scales are somewhat
larger in the mid-canopy region, while there is no difference between near-obstacle spatial
correlation and elsewhere (see Fig. 3) at a given z/h. The maximum spatial correlation in
the mid-canopy is around 5 × 10−3 m (rod spacing is 30 × 10−3 m and rod diameter is
dr = 4 × 10−3 m) and such high correlation values appear to occur during sweeping events
that perturb the dominant vortical motion. In the deep layer, the integral length scale never
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Fig. 3 Integral time (τ ) and length (l) scales estimated from zero-crossings of temporal and spatial auto-
correlation functions, respectively. The coordinates x and y are streamwise and lateral directions respectively.
Top panel a total of 171×221 time series were analyzed. The flow direction is from left to right. Bottom panel
evolution of integral length scale over a 20-s time interval. At a given time (each image), a total of 221 spatial
series each of length 171 points downstream. τ is normalized by h/u∗ and l by dr (see text)

exceeds the rod diameter, which is a measure of the initial size of a vortex. Figure 4 shows
the corresponding p.d.f. of these integral time and length scales normalized by h/u∗ (where
h = 0.12 m is the canopy height and u∗ = 0.045 m s−1 is the friction velocity at the canopy
top). The time scale h/u∗ often exceeds the correlation time τ in the mid-canopy layer
(i.e. sweeps frequently disturb persistent vortex streets), while temporal correlations tend to
persist longer.

The ensemble p.d.f. was constructed by taking a sub-sample of the �C dataset. This sub-
set consists of all spatial and temporal �C realizations that are separated by the maximum
auto-correlation length and time scales (inferred from C ′ not �C and calculated above),
so that each point may be viewed as an independent sample. Both ensembles for the two
z/h are shown in Fig. 5. The ensemble p.d.f. at z/h = 0.2 has a slightly heavier tail
than that at z/h = 0.5. It is to be noted that the integral statistics of �C (both spatial
and temporal) are much smaller than their C ′ counterparts, so that using the maximum
integral scales of C ′ when constructing the ensemble ensures stronger statistical indepen-
dence.
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Fig. 4 The p.d.f. of the integral time and length scales shown in Fig. 3, also normalized by h/u∗ and dr
respectively

Fig. 5 Thep.d.f. of the ensembles of independent spatial and temporal realizations of concentration differences
at the two depths z/h = 0.2, 0.5, with Gaussian distribution shown for reference
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Fig. 6 Binary result of the Kolmogorov–Smirnoff test when comparing the p.d.f. of each time series at each
z/h against the corresponding ensemble p.d.f. The H value is binary and is either 0 (green colour indicates
that the null hypothesis cannot be rejected at the 95 % confidence interval) or 1 (red colour indicates that the
null hypothesis can be rejected at the 95 % confidence interval)

Fig. 7 Similar to Fig. 6 but for comparing the distribution of each spatial series at each depth against the
corresponding ensemble distribution

4.2 Temporal and Spatial Statistics

To test the statistical similarity between the constructed ensemble and temporal distributions
of concentration, the Kolmogorov–Smirnoff test is performed for each time series (171 ×
221 series) against the ensemble p.d.f. The Kolmogorov–Smirnoff test is a non-parametric
test that quantifies the maximum distance between the cumulative distribution functions of
two samples without any prior assumptions about the distributions. The result of this test
is binary (0 or 1) H values with H = 1 corresponding to rejecting the null hypothesis that
the two p.d.f.s originate from the same distribution at the 95 % confidence level. Close to
the boundary, the temporal distribution of concentration difference is not captured by the
ensemble p.d.f. at z/h = 0.2 (Fig. 6), while all other time realizations (including higher
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Fig. 8 Lagged cross-correlation of time series in space. Top panel Peak of the cross-correlation function
between the concentration time series at the first location with that at all the downstream locations (170
time series). Middle panel time lag at which the peak in the cross-correlation function occurs. Bottom panel
Advection velocity calculated as the ratio of the distance between the first location and any downstream
location to the corresponding lag in the peak of the cross-correlation function

order statistics) are represented by this spatio-temporal transposition. Figure 6 also shows
that the mid-canopy layer exhibits a stricter ergodic behaviour, where H values are almost
zero everywhere. Note that while the ensemble realizations are drawn from uncorrelated
(statistically independent) samples, the Kolmogorov–Smirnoff test is conducted for all time
series (171 × 221). A drawback of conducting this test on all series is that it includes some
correlated events. On the other hand, the Kolmogorov–Smirnoff test is being conducted on
a much more expansive set of concentration differences not used in the computation of the
ensemble.

Figure 7 shows the similar analysis for spatial series against the ensemble. Each point in
the plot is a binary result of the Kolmogorov–Smirnoff test of a spatial p.d.f. sampled at a
particular time and compared to the same ensemble p.d.f. While the spatial realizations are
not fully ergodic, H = 0 still dominates the statistical test during most times, especially in
the deeper layer. The H = 1 regions in Fig. 7 (red colour) appear during relatively long
periods of sweeping events, where the dye concentration almost approaches zero (i.e. the dye
is entirely washed by sweeps). This is more evident in the z/h = 0.5 layer where sweeping
events are more frequent.
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Fig. 9 The p.d.f. of the normalized advection velocity calculated from the lagged cross-correlations in Fig. 8
at z/h = 0.2 and z/h = 0.5. The reported p.d.f. of LDA-measured velocity distribution in (Poggi et al. 2004a),
a third-order CEM (cumulant expansion model) fit, and Gaussian distribution are also shown for comparisons

A plausible explanation for broken ergodicity in the temporal statistics within the deeper
layer (left panel of Fig. 6) and the spatial statistics in the mid-canopy layer (right panel of
Fig. 7) may be attributed to the relatively larger integral time scale in the former and larger
integral length scale in the latter. Such long correlation reduces the sample size of available
independent realizations in time and space domains, which is missed when constructing the
ensemble distribution.

4.3 Cross-Correlation and Advection Velocity

The cross-correlation function between the time series sampled at the first location (sensor) in
the one cell configuration and that at all downstream locations was determined so as to com-
pute an advection velocity that can be compared to velocity measurements conducted using
the LDA.While the peak of the cross-correlation function decays with increased downstream
distance, the lag (in time) at which this peak occurs increases. Figure 8 shows the results
where the peak in cross-correlation function (top panel) remains significant despite decaying
in space. This slow decay and finite cross-correlation indicates that the quasi-deterministic
vortical structure (i.e. vonKármán streets) can expand beyond the one-cell domain and remain
sufficiently coherent. For example, in the deeper layer (z/h = 0.2), the decrease of the cross-
correlation with increasing spatial lags varies from 1 to 0.7, which is still significant. The
maximum time lags are 0.7 and 0.5 s at z/h = 0.2 and z/h = 0.5, respectively. The average
time for a uniform von Kármán vortex to cover a distance of one rod spacing is around 0.3
s, while the periodicity of shedding such vortices is around 0.2 s.

The advection velocity calculated from the above analysis is shown in the bottom panel
of Fig. 8. On average, this calculation captures the mean streamwise velocity measured and
reported by Poggi et al. (2004a) and Poggi et al. (2011) (around 0.08 and 0.1 m s−1 at
z/h = 0.2 and z/h = 0.5, respectively). More important here is the p.d.f. of these velocities
that is shown in Fig. 9 along with the LDA velocity measurements in (Poggi et al. 2004a).
The reasonable agreement here suggests that the advection velocity may be inferred from
scalar concentration statistics through a spatio-temporal transposition, which is consistent
with an operational view of the ergodic hypothesis.
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5 Conclusion

High resolution spatio-temporal datasets of within-canopy scalar concentration measure-
ments were collected to examine necessary conditions for ergodicity. While limited in
experimental scope (due to the sampling length in time and space), the current work is the first
to examine the ergodic hypothesis on scalar turbulence statistics within canopies. The main
premise when analyzing this dataset is that if a turbulent flow is both statistically stationary in
time and homogeneous in space, then its temporal and spatial statistical properties should be
the same if the ergodic hypothesis is correct. Canopy turbulence is inhomogeneous in the ver-
tical direction necessitating a modification to this premise. The proposed modification here
replaces spatial with planar statistical properties defined at a given z/h. Even with this modi-
fication, the presence of rods may still break ergodic behaviour because canopy turbulence in
the deeper layers appears to be dominated by low-dimensional (or even quasi-deterministic)
motion (von Kármán vortex streets) that cannot be ergodic. However, frequent sweeps from
aloft occasionally disturb the onset of such motion, and other mechanisms responsible for
the breakdown of these von Kármán vortices (e.g. their subsequent collision with other rods)
may produce fine-scaled turbulence that is locally homogeneous away from the rods. These
other mechanisms may act to restore ergodicity but within a smaller or restricted spatial
domain.

The experimental results here show a general tendency towards the validity of this oper-
ational version of the ergodic hypothesis, particularly for temporal statistics and in the
mid-canopy layers where sweeps tend to frequently disturb the onset of von Kármán streets.
Events associated with broken ergodicity were related to (i) sweeping and dye washing that
homogenized the spatial domain (an unavoidable experimental limitation) or (ii) longmemory
in time near physical obstacles that prohibit proper testing of the hypothesis due to insuf-
ficient sampling of statistically independent events. However, even within the single-cell,
the p.d.f. of the independently measured LDA advection velocity was reasonably recovered
from cross-correlation functions of concentration time series lagged in space. This agreement
suggests that the transposition of spatio-temporal scalar concentration statistics in turbulent
flows within canopies can still be achieved by a local advection velocity. Hence, it can be
surmised that scalar canopy turbulence does exhibit similarity between its temporal and spa-
tial statistical properties. This transposition is deemed as necessary but not sufficient for
accepting operational ergodicity within canopies.

Broader implications of these findings pertain to how the widely used combined
eco-physiological and canopy transport models are compared to tower measurements.
Comparisons between tower-based measurements and modeled scalar (or momentum) flux
calculations are often presented using ensemble-averages, where ensemble averaging is often
conducted over many days but presented by time of day (presumably reflecting similar light
conditions) or by atmospheric stability class (Baldocchi and Meyers 1998; Katul and Albert-
son 1998). Thework here suggests that such a representationmay be theoreticallymore sound
than comparisons by individual events whose duration is 30 min or so. Conducting time and
some ensemble averaging over ‘similar’ conditions (be they light regimes or atmospheric sta-
bility classes) is likely to converge to the spatio-temporal average over which the combined
eco-physiological and canopy transport models are derived from (if operational ergodicity is
assumed). Hence, our results provide some support to the recent approaches to model-data
comparisons and assessments, where ensemble averaging over similar conditions (or hydro-
meteorological states) is now commonly practiced in canopy turbulence studies (but without
strong rationale).
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