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Abstract The turbulent energy spectra and cospectra of momentum and sensible heat fluxes
are examined theoretically and experimentally with increasing flux Richardson number (Rf)
in the stable atmospheric surface layer. A cospectral budget model, previously used to explain
the bulk relation between the turbulent Prandtl number (Prt) and the gradient Richardson
number (Ri) as well as the relation between Rf and Ri, is employed to interpret field measure-
ments over a lake and a glacier. The shapes of the vertical velocity and temperature spectra,
needed for closing the cospectral budget model, are first examined with increasing Rf. In
addition, the wavenumber-dependent relaxation time scales for momentum and heat fluxes
are inferred from the cospectral budgets and investigated. Using experimental data and pro-
posed extensions to the cospectral budget model, the existence of a ‘−1’ power-law scaling in
the temperature spectra but its absence from the vertical velocity spectra is shown to reduce
the magnitude of the maximum flux Richardson number (Rfm), which is commonly inferred
from the Rf –Ri relation when Ri becomes very large (idealized with Ri → ∞). Moreover,
dissimilarity in relaxation time scales between momentum and heat fluxes, also affected by
the existence of the ‘−1’ power-law scaling in the temperature spectra, leads to Prt �= 1
under near-neutral conditions. It is further shown that the production rate of turbulent kinetic
energy decreases more rapidly than that of turbulent potential energy as Rf → Rfm, which
explains the observed disappearance of the inertial subrange in the vertical velocity spectra at
a smaller Rf as compared to its counterpart in the temperature spectra. These results further
demonstrate novel linkages between the scale-wise turbulent kinetic energy and potential
energy distributions and macroscopic relations such as stability correction functions to the
mean flow and the Prt–Ri relation.
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1 Introduction

While the significance of stably-stratified turbulent flows is rarely disputed, operational for-
mulations describing their bulk properties continue to be debated (Fernando 1991; Sorbjan
2006, 2010; Huang et al. 2013; Sandu et al. 2013; Mahrt 2014). Dimensional considerations
or similarity arguments that predict bulk properties of stably stratified turbulent flows are
extensively employed in a myriad of problems but their theoretical underpinnings remain
elusive despite advances in numerical simulations and experiments (Derbyshire 1999; Mahrt
1999; Poulos et al. 2002; Sorbjan 2006, 2010; Fernando andWeil 2010; Chung andMatheou
2012; Holtslag 2013). A case in point is the stability correction functions for momentum and
heat that account for buoyancy distortions to the logarithmic mean velocity and temperature
profiles in the stably-stratified atmospheric surface-layer (ASL)flows.Deriving these stability
correction functions theoretically continues to be the subject of active research (Sukoriansky
et al. 2005a, b; Katul et al. 2011; Li et al. 2012b; Sukoriansky andGalperin 2013). In addition,
the variation of their ratio, or the turbulent Prandtl number (Prt), with increasing stability,
quantified using the gradient Richardson number (Ri) or the flux Richardson number (Rf),
remains a long-standing problem as well (Yamada 1975; Kays 1994; Venayagamoorthy and
Stretch 2009). Since the Kansas experiment (Kaimal et al. 1972), it was often assumed that
Prt ≈ 1 in the stable ASL (Foken 2006) provided Ri is below some critical value coin-
ciding with a presumed laminarization of turbulent flows (Howard 1961; Miles 1961; Miles
and Howard 1964). However, a large corpus of data and simulations now suggest that Prt
increases with increasing Ri (Zilitinkevich et al. 2007, 2008, 2013) and connections between
laminarization and such a critical Ri are questionable at best (Monin and Yaglom 1971), as
reviewed elsewhere (Galperin et al. 2007).

Some studies have investigated these issues using phenomenological theories (Katul et al.
2011; Li et al. 2012b; Salesky et al. 2013) that offer a promising theoretical tactic to begin
explaining the shapes of stability correction functions for momentum and heat, as well as
their ratio Prt . These phenomenological theories proved to be rather successful for unstable
conditions but required ad hoc modifications for stable conditions. Despite their drawbacks,
these phenomenological theories do offer a newperspective on links between vertical velocity
and temperature spectra and the mean velocity and temperature profiles in the ASL. Given
that the vertical velocity and temperature spectral shapes appear to be general in the ASL, it
has been conjectured that the near-universal character of the stability correction functions as
well as the Prt–Ri and Rf –Ri relations may be connected to the general shapes of the vertical
velocity and temperature spectra (Katul et al. 2011; Li et al. 2012b).

Two recent studies further explored linkages between spectra and bulk properties of the
flow by closing cospectral budgets for momentum and sensible heat fluxes using idealized
vertical velocity and temperature spectral shapes (Katul et al. 2013, 2014). Guided by direct
numerical simulation (DNS) results (Katul et al. 2014), the spectra of vertical velocity and
temperature were assumed to follow the ‘−5/3’ power-law scaling (Kolmogorov 1941a, b)
within the inertial subrange (ISR), but to ‘level-off’ to a constant when the wavenumber is
smaller than a certain threshold. In theseDNS results, the presence of a solid boundary appears
to randomize the energy distribution among scales larger than the distance from the boundary
resulting in near-flat vertical velocity and temperature spectra. The cospectral budget analysis
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in these studies alleviated some of the shortcomings of a previous phenomenological theory
developed for a non-stratified smooth pipe flow (Gioia et al. 2010), as discussed elsewhere
(Katul and Manes 2014). It also produced satisfactory results under both unstable (Katul
et al. 2013) and stable (Katul et al. 2014) conditions thereby underlining possible linkages
between the scale-wise turbulent kinetic energy (TKE) and turbulent potential energy (TPE)
distributions (defined by the spectra) and macroscopic relations such as the stability cor-
rection functions (Li et al. 2015). A parallel theoretical effort relying on the quasi-normal
scale elimination theory (Sukoriansky et al. 2005a, b, 2006; Galperin and Sukoriansky 2010;
Sukoriansky and Galperin 2013) was also successful in relating macroscopic properties of
stable flows to turbulence theory, but did not consider all the features of wall-bounded flows
similar to those in the ASL.

In addition to the idealized spectral shapes for vertical velocity and temperature, a
wavenumber-dependent relaxation time scale first derived from Kolmogorov’s scaling argu-
ment by Corrsin (1961) was also employed in Katul et al. (2014). This relaxation time
scale continues to enjoy wide-spread usage in turbulence studies (Bos et al. 2004; Bos and
Bertoglio 2007). The main assumption employed to close the cospectral budgets requires
that this wavenumber-dependent relaxation time scale is identical for momentum and heat.

These assumptions, while offering a number of mathematical conveniences, do not neces-
sarily reflect actual spectra in the ASL known to be affected by low-frequency modulations
(Pond et al. 1966; Kader and Yaglom 1991; Katul et al. 1995, 1998; Riley and Lindborg
2008; Calaf et al. 2013; Grachev et al. 2013). The objective here is to investigate the impact
of such low frequency modulations on vertical velocity and temperature spectra and their
propagation to momentum and heat flux cospectra using observations from two field exper-
iments that cover a wide range of stable conditions over uniform and flat surfaces, and then
to propose a revised cospectral budget model in light of the observations. The data suggest
the existence of a ‘−1’ power-law scaling in temperature spectra and some dissimilarity in
relaxation time scales between momentum and heat. How these two findings affect Prt under
neutral conditions and the maximum flux Richardson number (Rfm) is addressed by gener-
alizing the cospectral budget model in Katul et al. (2014). Moreover, changes in the TKE
and TPE spectra with increasing stability are also examined using the generalized cospectral
budget model.

2 Theory

The stability correction functions formomentumφm(ζ ) and heatφh(ζ ) in theASL are defined
as (Stull 1988)

φm(ζ ) = κvz

u∗
∂U (z)

∂z
= κvz

u∗
S, (1)

φh(ζ ) = κvz

θ∗
∂θ(z)

∂z
= κvz

θ∗
Γ, (2)

where the overline denotes Reynolds averaging and primes denote turbulent fluctuations
from the averaged state, u∗ is the friction velocity, S = ∂U (z)/∂z is the mean velocity
gradient, Γ = ∂θ(z)/∂z is the mean potential temperature gradient, κv = 0.4 is the von
Kármán constant, ζ = z/L is the stability parameter, z is the height above the ground (or
above the zero-plane displacement), L = −u3∗/(κvβw′θv′) is the Obukhov length (Obukhov
1946; Monin and Obukhov 1954; Businger and Yaglom 1971), β = g/θv is the buoyancy
parameter, g is the acceleration due to gravity, θv is the virtual potential temperature, and
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θ∗ = −w′θ ′/u∗ is a temperature scaling parameter. For simplicity, the virtual temperature is
approximated by the air temperature due to the minor impact of the water vapour flux on the
buoyancy flux in the stable ASL. The potential temperature is also approximated by the air
temperature since the data used in our study were collected near the surface (z < 4 m).

These definitions for φm(ζ ) and φh(ζ ) imply that the turbulent viscosity for momentum
and the turbulent diffusivity for heat are Km = κvu∗z/φm(ζ ) and Kh = κvu∗z/φh(ζ ),
respectively. As such, the turbulent Prandtl number Prt is given as

Prt = Km

Kh
= φh(ζ )

φm(ζ )
. (3)

Under stable conditions, Prt is commonly expressed as the ratio of gradient (Ri) to flux (Rf)
Richardson numbers (Kays 1994),

Prt = Ri

Rf
, (4)

where

Ri = βΓ

S2
= N 2

S2
, (5)

Rf = − βw
′
θ

′

−Su ′
w

′ = β

S

∞∫

0
FwT (k) dk

∞∫

0
Fuw (k) dk

, (6)

and where N = (βΓ )1/2 is the Brunt–Väisälä frequency. Note that Pm = −Su ′
w

′ is the
shear or mechanical production rate of TKE and βw

′
θ

′ is the conversion rate of TKE to TPE
by buoyancy in stable conditions where w

′
θ

′
< 0. Fuw(k) and FwT (k) are the momentum-

flux and heat-flux cospectra at wavenumber k, respectively. In principle, Fuw(k) and FwT (k)
should be integrated over the surface of a sphere of radius k, where k is the scalarwavenumber.
However, because cospectra and spectra reported in ASL field studies are usually calcu-
lated from single-point time series measurements (Kaimal et al. 1972; Wyngaard and Cote
1972; Kaimal 1973) and frequencies are converted to streamwise one-dimensional wavenum-
bers using Taylor’s frozen turbulence hypothesis (Taylor 1938; Kaimal and Finnigan 1994),
one-dimensional cospectra and spectra are used here and k should be interpreted as the
wavenumber in the streamwise direction.

Deriving a relation between Rf and Ri or a relation between Prt and Ri by closing the
cospectral budgets of momentum and heat fluxes was the main result of Katul et al. (2014).
Here, the final results of this derivation are repeated without discussing its details. For a
stationary, locally equilibrated, and sufficiently developed turbulent stable ASL flow, the
momentum and heat flux cospectra are expressed as

Fuw(k) = (1 − CIU )

AU τ−1
uw (k)

SFww(k), (7)

FwT (k) = (1 − CIT )

AT τ−1
wT (k)

[


Fww(k) − βFTT (k)

1 − CIT

]

, (8)

where Fww(k) and FTT (k) are the spectra of vertical velocity and temperature, respectively,
τuw(k) and τwT (k) are two wavenumber-dependent relaxation time scales defined later (Eq.
11), AU ≈ AT (≈1.8) are the Rotta constants (Launder et al. 1975; Pope 2000), and CIU ≈
CIT (≈0.6) are constants associated with isotropization of production terms whose value
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can be determined by the rapid distortion theory in homogeneous turbulence (Launder et al.
1975; Pope 2000).

At this stage of the derivation, these two spectra can take on any shape. When idealized
spectral shapes are assumed (Katul et al. 2014) with a constant value for k < ka and the ISR
‘−5/3’ scaling (Kolmogorov 1941a, b) for k > ka ,

Fww (k) = min
(
Cwwk

−5/3,Cwwka
−5/3

)
, (9)

FTT (k) = min
(
CTT k

−5/3,CTT ka
−5/3

)
, (10)

where ka is a threshold wavenumber associated with the start of the ISR, Cww = Coε
2/3,

CTT = CT ε−1/3NT , ε and NT are the TKE dissipation rate and the temperature variance
dissipation rate, respectively. The constantsCo andCT are theKolmogorov andKolmogorov–
Obukvov–Corrsin constants for vertical velocity and temperature spectra, respectively. For
a one-dimensional wavenumber interpretation their values are Co = 0.65 and CT = 0.8
(Ishihara et al. 2002; Chung and Matheou 2012). The ka threshold is commonly set to be 1/z
for ASL flows under near-neutral conditions since eddies of size z or larger interact with the
surface and are usually anisotropic (Townsend 1976; Kaimal and Finnigan 1994).

τuw(k) and τwT (k) are two wavenumber-dependent relaxation time scales used in the
Rotta closure model (Launder et al. 1975; Pope 2000), which are assumed to be identical and
given by (Bos et al. 2004; Bos and Bertoglio 2007)

τ(k) = min
(
ε−1/3k−2/3, ε−1/3ka

−2/3) . (11)

The ‘−2/3’ scaling of relaxation time scales results in a ‘−7/3’ scaling in themomentum and
heat flux cospectra, which are consistent with many dimensional considerations, experiments
and simulations (Lumley 1967; Kaimal and Finnigan 1994; Pope 2000). Some studies argued
that the flux-transfer terms in the cospectral budgets of momentum and heat fluxes could be
significant within the ISR (Bos et al. 2004; Bos and Bertoglio 2007; Cava and Katul 2012),
which led to a scaling other than ‘−7/3’ for the momentum- and heat-flux cospectra. Since
the majority of field studies support a ‘−7/3’ cospectral scaling in the stable ASL (Kaimal
and Finnigan 1994), deviations of cospectral scaling from the ‘−7/3’ value within the ISR
due to contributions from flux-transfer terms are ignored for now. Also note this choice of
τ(k) is similar but not identical to relaxation time scales employed in TKE–ε and other
higher-order turbulent closure models (Launder et al. 1975; Pope 2000; Katul et al. 2004;
Zilitinkevich et al. 2008), which define τ as the ratio of available TKE to ε.

Substituting Fww(k), FTT (k), and τ(k) into Eqs. 7 and 8 yields Fuw(k) and FwT (k),
which can be further substituted into Eq. 6 to obtain the relation between Rf and Ri or the
relation between Prt and Ri (Katul et al. 2014), as follows

Rf = 1 + ωRi − √−4Ri + (−1 − ωRi)2

2
, (12)

Prt = 2Ri

1 + ωRi − √−4Ri + (−1 − ωRi)2
, (13)

where ω = (1 − CIT )−1(CT /Co) + 1 ≈ 4. As shown in Katul et al. (2014), Rf increases
with increasing Ri and then begins to flatten at Ri ≈ 0.25. The ‘flattening’ indicates that
the Rf cannot increase infinitely as Ri, which can be viewed as an external parameter that
characterizes the mean flow (Zilitinkevich et al. 2007). Instead, Rf is determined by the
turbulence state and is limited by a ‘maximumfluxRichardson number’ (Rfm = 1/ω ≈ 0.25)
evenwhen Ri becomes very large (idealizedwithRi → ∞). It is also shown that the turbulent
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6 D. Li et al.

Table 1 The range of Rf, the
averaged Rf, and the number of
30-min segments in each of the
eight stability regimes

Regime a reflects near-neutral
conditions while regime h
reflects very stable conditions.
Regimes a to e only include the
lake data and regimes f to h only
include the glacier data. Details
about the two datasets can be
found in the Appendix

Regime Rf Averaged Rf Segments

a 0.00 < Rf < 0.01 0.006 16

b 0.01 < Rf < 0.02 0.015 25

c 0.02 < Rf < 0.04 0.029 19

d 0.04 < Rf < 0.08 0.047 15

e 0.08 < Rf < 0.25 0.110 13

f 0.08 < Rf < 0.25 0.193 6

g 0.25 < Rf < 0.50 0.405 6

h 0.50 < Rf < 1.00 0.620 9

Prandtl number Prt increases with increasing Ri (Katul et al. 2014). The Rf –Ri and Prt–Ri
relations predicted by the cospectral budget model (Eqs. 12, 13) reasonably agree with many
laboratory and field experiments and numerical simulations when the vertical velocity and
temperature spectra do not appreciably deviate from their idealized shapes (Katul et al. 2014).
It is precisely the observed deviations in the spectra of vertical velocity and temperature from
their idealized shapes that frame the scope here.

3 Results

The closure to the cospectral budget model in Katul et al. (2014) relied on two assumptions:
first, Fww(k) and FTT (k) follow the ISR ‘−5/3’ scaling when k > ka and ‘level off’ when
k < ka (see Eqs. 9, 10). The values of ka may be different for momentum and heat, and
the consequences of having different ka for momentum and heat have been discussed in
Katul et al. (2014). Second, the relaxation time scales for momentum and heat fluxes are
identical and follow the ‘−2/3’ scaling law in the ISR (see Eq. 11). In this section, these two
assumptions are examined using data from two field experiments (over a lake and a glacier)
as described in the Appendix. The datasets are separated into eight groups with increasing
R f , which range from near-neutral to very stable regimes (see Table 1).

3.1 The Turbulent Energy Spectra Fww(k) and FTT (k)

To investigate the first assumption, the measured Fww(k) and FTT (k) are shown in
Figs. 1 and 2, respectively. Their scaling laws in two ranges of wavenumber (k < ka
and k > ka) are also noted. In this section, ka = 1/z is used as a length scale for normal-
izing both spectra (Townsend 1976; Kaimal and Finnigan 1994). However, as seen later, a
more general transition wavenumber can be used for Fww(k) and FTT (k) when revising the
idealized spectral shapes.

Fww(k) appears to reasonably follow its idealized shape in regimes a to e (i.e., when Rf is
well below Rfm ≈ 0.25). However, in regimes f to h (as Rf approaches or exceeds Rfm), its
ISR is appreciably reduced. This finding is consistent with recent experiments reporting that
ISR scaling no longer holds when Rf > Rfm and vertical turbulent fluxes become small and
difficult to measure (Grachev et al. 2013). Some of the fine-scale turbulence that continues
to survive when Rf > Rfm in Fww(k) does not follow the ISR scaling. Studies also have
found that turbulence is no longer well-developed and becomes globally intermittent at these
extreme stabilities (Mahrt 1999; Ansorge and Mellado 2014; Deusebio et al. 2014).
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Fig. 1 The normalized spectra of vertical velocity (Fww(k)) for the eight stability regimes. σw is the standard
deviation of the vertical velocity. a–h correspond to the stability regimes a to h in Table 1, respectively. All
spectra are averaged over all segments in the stability regime. ka = 1/z

Compared to Fww(k), FTT (k) shows many interesting features. First, FTT (k) exhibits a
distinct ‘−1’ scaling when k < ka , which was not previously considered in the cospectral
budget model since FTT (k) was assumed to follow the same idealized spectral shape as
Fww(k) (Katul et al. 2014). Second, as Rf approaches and increases beyond Rfm, the ‘−1’
scaling is gradually diminished at low wavenumbers. However, even when Rf > Rfm, the
large wavenumber part of FTT (k) still maintains the ‘−5/3’ scaling.
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Fig. 2 The normalized spectra of temperature (FTT (k)) for the eight stability regimes. σT is the standard
deviation of the temperature. a–h correspond to the stability regimes a to h in Table 1, respectively. All spectra
are averaged over all segments in the stability regime. ka = 1/z

The dynamics at play when Rf > Rfm may be related to the Ozmidov length scale, which
can be viewed as the smallest scale influenced by the stabilizing buoyancy force. TheOzmidov
length scale is defined as L0 = [ε/N 3]1/2, where ε is the dissipation rate of T K E and N is the
Brunt–Väisälä frequency defined earlier. For the idealized ASL considered in the cospectral
budget model, it can be shown that L0/(κvz) = [

(φm(ζ ) − ζ )1/2(Prtζφm(ζ ))−3/4
]
. As a
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result, the Ozmidov length scale approaches z when ζ ≈ 0.3−0.4, which corresponds to Rf
of 0.13 to 0.14. As can be seen from Table 1, this occurs between regime e and regime f .
Up to regime e, the influence of stability does not extend to the ISR of Fww(k) or FTT (k)
because L0 > z. At higher Rf, the influence of stability is manifest in Fww(k), which is
the component directly modulated by buoyancy, but the influence of stability on FTT (k) is
not direct and hence the ISR scaling for temperature survives until even higher stabilities are
reached. Further explanation for this difference between Fww(k) and FTT (k)when Rf > Rfm
will be presented later. In addition, a more general transition wavenumber will be used later
when generalizing the idealized spectral shapes for Fww(k) and FTT (k) to accommodate
other length scales in addition to z in the stable ASL.

The ‘−1’ power-law scaling observed in the spectra of temperature here has been reported
in other ASL experiments for the spectra of the streamwise velocity component, pressure,
and skin and air temperatures, especially for near-neutral conditions (Kader and Yaglom
1991; Katul et al. 1995, 1996, 1998, 2012; Katul and Chu 1998). It was also documented
in many laboratory studies for the spectra of the streamwise velocity component (Perry
and Abell 1975, 1977; Perry et al. 1986) but not Fww(k). It is noted that the ‘−1’ scaling
examined here is not connected to the ‘−1’ scaling in the ‘viscous-convective’ subrange at
large molecular Schmidt or Prandtl numbers reviewed elsewhere (Davidson et al. 2012).

Some studies have reported a transition from the ‘−5/3’ scaling to ‘−3’ scaling in FTT (k)
(and also Fww(k)) as the wavenumber decreases below the Ozmidov wavenumber (1/L0)
using measurements in the free troposphere (i.e. above the atmospheric boundary layer) and
the lower stratosphere (Cot 2001), and in the deep ocean (Bouruet-Aubertot et al. 2010). The
‘−3’ scaling is associated with internal gravity waves that affect scales larger than L0 (Riley
and Lindborg 2008; Galperin and Sukoriansky 2010; Sukoriansky and Galperin 2013). The
difference between our study and those aforementioned studies is the presence of the ground
(i.e., the wall), which is necessary for the onset of a ‘−1’ scaling (at least for near-neutral to
mildly stable flows). The ‘wall effect’ is absent in the aforementioned studies that reported
a transition from ‘−5/3’ to ‘−3’ scaling in the temperature spectra, thereby preventing their
applicability here to the ASL. In addition, even when L0 approaches or becomes smaller
than z, as in regimes f to g, a ‘−3’ scaling is not observed in FTT (k) or Fww(k) (see
Figs. 1, 2). The absence of ‘−3’ scaling in FTT (k) and Fww(k) at these high stabilities
may be explained by the presence of external perturbations such as radiative perturbations
occurring during passage of clouds, which prevent gravity waves from persisting over time
scales on the order of 30 min (the averaging interval used in our study). Cava et al. (2004)
reported the percentages of gravity-wave occurrence over an even-aged pine forest for 21
nights, which were only 6 % on average, and were zero for 10 of 21 nights. The data quality
control applied here may have also removed non-stationary runs, or runs affected by large
flux-transport terms, since the differences inmeasured fluxes among the four different heights
were restricted to <10 %.

3.2 The Relaxation Time Scales τuw(k) and τwT (k)

To examine the second assumption, the wavenumber-dependent relaxation time scales for
momentum and heat fluxes are estimated as

τuw(k) = Fuw(k)

SFww(k)

AU

1 − CIU
, (14)

τwT (k) = FwT[
Γ Fww(k) − βFTT (k)

1−CIT

]
AT

1 − CIT
. (15)
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The measured Fww(k) and FTT (k) are combined with measured Fuw(k) and FwT (k) to infer
the relaxation time scales from the two datasets. S andΓ are estimated by fitting second-order
polynomial functions to the mean velocity and temperature at the four measurement levels,
and then computing derivatives to fitted functions. The inferred relaxation time scales for
momentum and heat fluxes pre-multiplied by k2/3 are shown in Fig. 3.

It is clear that the relaxation time scales for momentum and heat fluxes, as computed from
Eqs. 14 and 15 respectively, differ in magnitude and scaling laws with k. In particular, it
appears that the largest difference resides in the low wavenumber part. When Rf < Rfm (i.e.,
regimes a to e), τuw roughly follows the ‘−2/3’ power-law scaling (which corresponds to
τuwk2/3 being a constant, see the black lines in Fig. 3) over a decade of scales (0.5 < k/ka <

5) and approaches a constant (which corresponds to τuwk2/3 following a ‘2/3’ power-law
scaling, see the black dashed line in Fig. 3b) at very low wavenumber (k/ka < 0.5).

On the other hand, τwT trends may be consistent with ‘−2/3’ power-law scaling at large
wavenumbers (k/ka > 5) though the noise level introduced by the gradients in Eq. 15
prohibits definitive assessments. It is noted that some studies have shown that the flux-
transfer terms in the cospectral budgets can cause deviations of the scaling of FwT (k) from
the ‘−7/3’ power-law scaling in the ISR (Bos et al. 2004; Bos and Bertoglio 2007; Cava
and Katul 2012; Li et al. 2015), which might also contribute to the indistinct ‘−2/3’ scaling
law in τwT here. In the low wavenumber part, the τwT appears to be constant (i.e., τwT k2/3

follows a ‘2/3’ scaling) or slightly increasing as k increases, due to the presence of a ‘−1’
power-law scaling in the temperature spectra within this range (see Eq. 15).

As stability increases further, large scatter exists in the inferred τuw and τwT , but it appears
that the ‘−2/3’ scaling holds for both τuw and τwT for very large k, at least within the
confines of the noise introduced from the measured gradients (see Eqs. 14, 15). Overall,
when Rf < Rfm, the ‘−2/3’ power-law scaling exists for both τuw and τwT as predicted from
ISR scaling, but the transitions from the ‘−2/3’ power-law scaling to a constant or some
other scaling law differ for τuw and τwT . The transition wavenumber for τuw is smaller than
the transition wavenumber for τwT , and the consequences of this difference in transitional
wavenumber are discussed below.

4 Discussions

The role of a ‘−1’ power-law scaling in FTT (k) as well as dissimilarity in relaxation time
scales for momentum and heat fluxes as suggested by the measurements are now discussed
in the context of Prt–Ri and Rf–Ri relations. Changes in the TKE and TPE spectra as the
ASL transitions to very stable conditions are also discussed.

4.1 The Impact of FTT (k) ∼ k−1 and the Dissimilarity in Relaxation Time Scales

Based on experimental data, the idealized shapes of Fww(k), FTT (k), τuw(k), and τwT (k)
used earlier (Katul et al. 2014) are revised and summarized in Fig. 4. In Katul et al. (2014),
the spectral shape of Fww(k) was assumed to follow the ‘−5/3’ ISR scaling when k > ka
and a constant when k < ka at least when Rf < Rfm. As a result, Fww(k) at the transition
wavenumber ka is continuous but not smooth, though this has a minor impact on any bulk
formulation requiring a wavenumber-integrated form of Fww(k). This idealized shape for
Fww(k) is reasonably supported by the two datasets (see Fig. 1) and is not modified here
except that a more general transition wavenumber between the ISR and large scales ka,w is
used (see Fig. 4a), which can be different from its counterpart in the temperature spectra.
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Fig. 3 The Rotta model’s relaxation time scales for momentum flux (τuw) and heat flux (τwT ) pre-multiplied
by k2/3 for the eight stability regimes. The black lines indicate the flat regimes and the black dashed line in b
indicates the ‘2/3’ scaling. a–h Correspond to stability regimes a to h in Table 1, respectively. ka = 1/z

However, measured FTT (k) significantly differs from this idealized shape due to the
presence of a ‘−1’ power-law scaling in the low wavenumber range, as shown in Fig. 2. As
a result, the effects of the ‘−1’ scaling on the bulk properties of the stable ASL are now
explicitly considered. To simplify the analysis, the ‘−1’ power-law scaling in FTT (k) is
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Fig. 4 The idealized shapes of Fww (a), FTT (b), τuw (c), τwT (d)

assumed to extend from αδ to ka,T as shown in Fig. 4b, where α is a constant, and is flow-
and stability-dependent; δ is the depth of the atmospheric boundary layer. The length scale
αδ is a characteristic size of large turbulent eddies in the stable ASL, which are assumed to
be larger than z. A more general transition wavenumber between the ISR and large scales
ka,T is used here to accommodate the impact of other length scales such as the Ozmidov
length scale (in addition to z).

The relaxation time scales for both momentum and heat fluxes are still assumed to follow
the ‘−2/3’ power-law scaling at large k and become constant at small k for mathematical
convenience. However, the transition wavenumber is different for momentum and heat fluxes
(i.e., kτ,w �= kτ,T ), which can also be different from ka,w and ka,T . Comparing Figs. 1, 2,
and 3 also reveals that kτ,w < ka,w but kτ,T > ka,T and kτ,T > ka,w. The relations between
different transition wavenumber are significant because they define the idealized shapes of
spectra and relaxation time scales.

With these idealized shapes for spectra and relaxation time scales shown in Fig. 4, inte-
grating the cospectra models (Eqs. 7, 8) from k = 0 to k = ∞ yields the momentum and
heat fluxes. It can be shown that,

u ′
w

′ =
∞∫

0

Fuw (k) dk = −1 − CIU

AU
Coε

1
3 S f1, (16)

w′θ ′ =
∞∫

0

FwT (k) dk = −1 − CIT

AT
Coε

1
3 Γ g1Q, (17)
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where

Q =
(

1 − 1

1 − CIT

CT

Co

g2
g1

Rf(
1 − Rf

)

)

, (18)

f1 = 1

k4/3a,w

[
15

4
− 2

(
kτ,w

ka,w

)1/3
]

, (19)

g1 = 1

k4/3τ,T

[
5

2

(
kτ,T

ka,w

)2/3

− 3

4

]

, (20)

and

g2 = 1

k4/3τ,T

[(
5

2
+ ln(ka,Tαδ)

) (
kτ,T

ka,T

)2/3

− 3

4

]

. (21)

Hence,

Pr−1
t = Rf

Rg
= AU (1 − CIT )

AT (1 − CIU )

g1
f1
Q. (22)

Note that with β w
′
θ

′ = Rf S u
′
w

′ = −Rf Pm , the stationary TKE budget equation under

local equilibrium yields ε = Pm + βw
′
θ

′ = Pm(1 − Rf ). To ensure ε > 0, it is necessary
that Rf < 1 to maintain turbulent conditions. It is again pointed out that the cospectral budget
model assumes fully-developed turbulent conditions so that a sufficiently large ISR exists.
In addition, to ensure Prt > 0, Rf must be smaller than a threshold given by

Rfm = 1

1 + 1
1−CIT

CT
Co

g2
g1

. (23)

It is interesting to compare these new results to those in Katul et al. (2014) in which ka,w =
kτ,w = ka,T = kτ,T = 1/(αδ) is assumed so that f1 = g1 = g2. It is clear from Eq. 23
that Rfm is modulated by the inequality between g1 and g2, which was not accounted for
previously (Katul et al. 2014). This inequality between g1 and g2 stems from the inequality
among ka,w, ka,T and kτ,T , as well as the existence of the ‘−1’ scaling in FTT (k) shown in
Fig. 2, as can be seen from Eqs. 20 and 21. In particular, when ka,w = ka,T = kτ,T > 1/(αδ),
it can be demonstrated that

g2
g1

= 1 + 4

7
ln

(
ka,Tαδ

)
> 1, (24)

provided that ka,Tαδ > 1. As such, the relation between the maximum Rf obtained here
(R f newm ) and that from Katul et al. (2014) (Rf oldm ) is

Rf newm = 1

1 +
(

1
1−CIT

)
CT
Co

g2
g1

<
1

1 +
(

1
1−CIT

)
CT
Co

= Rf oldm . (25)

That is, the existence of ‘−1’ scaling in FTT (k) tends to reduce the numerical value of Rfm.
The magnitude of the reduction depends on g2/g1 and thus on αδ, which unfortunately is
not available from the measurements here. Future investigations with direct measurements
of the boundary-layer height or estimates from profile measurements (Zhang et al. 2014) are
needed to further constrain the reduction in Rfm arising from a ‘−1’ scaling in FTT (k).

123



14 D. Li et al.

Another important parameter to compare is Prt as neutral conditions are approached (i.e.,
when Rf = 0). In the derivation here,

Prt,neu = AT (1 − CIU )

AU (1 − CIT )

f1
g1

. (26)

Therefore, the deviation of Prt,neu from unity can be explained by AU �= AT , CIU �= CIT ,
or f1 �= g1. The first two inequalities are related to differences in the constants of the Rotta
model, while the third inequality is caused by dissimilarity in the relaxation time scales. Even
if the constants of the Rotta model are taken as the same for momentum and heat fluxes, as
in Katul et al. (2014), dissimilarity in the relaxation time scales, as shown in Fig. 3, can still
result in a Prt,neu differing from unity.

The majority of experiments and simulations suggest that Prt,neu < 1 but the variability
is often significant (Businger et al. 1971; Högström 1996; Venayagamoorthy and Stretch
2006, 2009; Huang et al. 2013). In many turbulence closure schemes used in numerical
weather and climate models, Prt,neu is often set to unity (Janjić 2002). Using the Weather
Research and Forecasting model (Skamarock and Klemp 2008), Tastula et al. (2015) showed
that changing the value of Prt,neu can affect the moisture profile up to 500 m. Given the sig-
nificance of Prt,neu, the generalized cospectral budget model here may provide a framework
for understanding the causes of variability of Prt,neu and for estimating its value.

4.2 Changes in the Turbulent Energy Spectra with Increasing Stability

Because
∫ ∞
0 Fww(k)dk > 0 even for Rf > Rfm, Rfm cannot be viewed as a point of incipient

laminarization. The analysis in Katul et al. (2014) suggested that Rfm may be viewed as a
threshold where the shape of Fww(k) begins to degenerate from its near-neutral and mildly
stable form, including a termination of the ISR scaling associated with three-dimensional
locally homogeneous and isotropic turbulence. This interpretation of Rfm is consistent with
other experimental work (Grachev et al. 2013) that showed, when Rf > Rfm, that ISR scal-
ing no longer holds (but the exact threshold may be Reynolds number dependent). This
interpretation is also supported by Fig. 1, where Fww(k) deviates significantly from its ide-
alized shape when Rf > Rfm. At this point, however, it remains unclear why Fww(k) or its
integrated form that is connected to the TKE in the vertical direction (denoted as TKEw)
respond to increasing Rf faster than FTT (k) or its integrated form that is connected to the
TPE. Recent work demonstrated the significant role of TPE in reproducing the Prt–Rf rela-
tion under stable conditions using the energy- and flux-budget Reynolds-averaged closure
model (Zilitinkevich et al. 2007, 2008, 2013). In the energy- and flux-budget model, the
impact of increasing Rf on the partition between TKE and TPE was key to re-constructing
the Prt–Rf relation. Can the cospectral budget model here reproduce such energy partition
with increasing Rf ? Can the cospectral budget model explain why Fww(k) collapses faster
than FTT (k) as Rf approaches Rfm? To address these questions, only the vertical component
of TKE (i.e., TKEw) is considered since it is the component that primarily controls vertical
movement opposed or supported by gravity. TKEw can be derived from the spectra as

TKEw = 1

2

∞∫

0

Fww (k) dk = 5

4
Coε

2
3 k

− 2
3

a,w, (27)

and

TPE = 1

2

β2

N 2

∞∫

0

FTT (k) dk = 1

2

β2

N 2

[
5

2
+ ln

(
ka,Tαδ

)
]

CT NT ε− 1
3 k

− 2
3

a,T . (28)
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To make progress on the aforementioned list of questions, an assumption of maximum sim-
plicity is to consider the equilibrated TKE and temperature variance budgets in the stable
ASL so that ε = Pm + βw

′
θ

′ = Pm(1 − Rf ) and NT = −w
′
θ

′
Γ = 1/β Rf 
 Pm . These

estimates can be inserted into the above two equations to yield

TPE

TKEw

= Q2
CT

Co

Rf

1 − Rf
, (29)

where

Q2 =
[

1 + 2

5
ln

(
ka,Tαδ

)
] (

ka,w

ka,T

)2/3

. (30)

Again, to ensure ε > 0 (a defining syndrome of turbulent flows), Rf < 1. In the range where
0 < Rf < 1, Eq. 29 shows that TPE/TKEw increases as Rf increases, which is consistent
with the energy- and flux-budget model results (Zilitinkevich et al. 2007, 2008, 2013).

However, the above analysis does not completely answer why the ISR in the spectra of
vertical velocity disappears earlier than in the spectra of temperature. To do so, the responses
of TKE and TPE to increasing Rf are now further examined in the vicinity of Rf = Rfm. First,

the production rate of TKE is derived as a function of Rf. Substituting ε = Pm + βw
′
θ

′ =
Pm(1 − Rf ) into Eq. 17 yields

βw′θ ′ = −β
1 − CIT

AT
CoP

1
3
m (1 − Rf )

1
3 Γ g1Q, (31)

and as a result,

− Rf Pm = −β
1 − CIT

AT
CoP

1
3
m (1 − Rf )

1
3 Γ g1Q, (32)

Pm =
[
1 − CIT

AT
CoβΓ g1(1 − Rf )

1
3 Q

] 3
2

Rf − 3
2 . (33)

Denoting w1 = [1/(1 − CIT )](CT /Co)(g2/g1), w2 = [(1 − CIT )/AT ]CoβΓ g1, and w3 =
w1 + 1, Eq. 33 can be rearranged to yield

Pm = w
3
2
2 (1 − Rf )

1
2

(

1 − w1
Rf

1 − Rf

) 3
2

Rf − 3
2 . (34)

Again, to ensure Pm > 0, Rf must satisfy the following: Rf < 1 (as earlier noted to maintain
finite ε) and Rf < (1/w3) = Rfm . Given that w1 ≈ 3 when g2 ≈ g1, w3 ≈ 4 and hence
Rfm ≈ 0.25. The change in Pm with respect to Rf is given by

dPm
dRf

= −w
3
2
2

(1 − w3Rf )
1
2

Rf
5
2 (Rf − 1)2

w3

[

Rf2 − 5

2w3
Rf + 3

2w3

]

. (35)

Provided w3 > 25/24, the quantity Rf2 − (5/2w3)Rf + (3/2w3) > 0. This is generally
satisfied since w3 ≈ 4. Hence, solving dPm/dRf = 0 yields Rf = 1/w3 = Rfm , and when
Rf < Rfm , dPm/dRf < 0. Therefore, when Rf → Rfm , both Pm and dPm/dRf become zero,
implying that any disturbances near Rf = Rfm are not likely to alter the state of Pm .

Using similar steps, the production rate of TPE (PT ) is derived and given by

PT = β2

N 2 NT = β2

N 2

1

β
Rf 
 Pm = RfPm . (36)

123



16 D. Li et al.

Given that Pm is expressed as a function of Rf according to Eq. 34,

dPT
dRf

= −w
3
2
2

(1 − w3Rf )
1
2

Rf
3
2 (Rf − 1)2

w3

[(

1 − 3

2w3

)

Rf + 1

2w3

]

. (37)

Noting that for w3 ≈ 4, it can be shown that dPT /dRf < 0 in the range of 0 < Rf < Rfm
and dPT /dRf = 0 occurs when Rf = Rfm. That is, Rf = Rfm is also a stable minimum for
PT around which perturbations are difficult to grow.

Given that both production rates of TKE and TPE approach zero when Rf → Rfm, evalu-
ation of their ratio in the vicinity of Rfm requires evaluation of the ratio of their derivatives
with respect to Rf (L’Hôpital’s Rule). It can be shown that

dPm/dRf

dPT /dRf
= 1 +

3
2w3

(Rf − 1)2

Rf
[(

1 − 3
2w3

)
Rf + 1

2w3

] > 1. (38)

Consequently, nomatter what their starting point was whenRf < Rfm, the rate of decay of Pm
is faster than PT with increasingRf asRf → Rfm, which is consistent with observed spectra of
vertical velocity collapsing before their temperature counterparts in the vicinity of Rf = Rfm
as shown in Figs. 1 and 2. Interestingly, the earlier collapse of Fww(k) than FTT (k) is in
broad agreement with the results from the quasi-normal scale elimination theory, as shown
in Galperin and Sukoriansky (2010) and Sukoriansky and Galperin (2013); however, those
studies are focused on the transition of ‘−5/3’ to ‘−3’ scaling at the Ozmidov wavenumber
in both kinetic and potential energy spectra.

In summary, the generalized cospectral budget model reproduces the variation of the
partitioning between TKE and TPEwith increasingRf. It also explains why Fww(k) collapses
faster than FTT (k) as Rf approaches Rfm.

5 Conclusions

A recently proposed cospectral budget model (Katul et al. 2014) connected a number of fea-
tures about the stable ASL including the spectral shapes of vertical velocity and temperature,
the turbulent Prandtl number, and the existence of a ‘maximum flux Richardson number’
Rfm ≈ 0.25 that was shown not to be tied to laminarization. Critical assumptions leading to
those results are examined based on datasets collected over a lake and a glacier, namely, the
ideal spectral shapes that follow the ‘−5/3’ scaling at high wavenumbers and flatten at low
wavenumbers, as well as the similarity between relaxation time scales for momentum and
heat fluxes. It is observed that the spectra of temperature follow a ‘−1’ power-law scaling for
small wavenumbers and then follow a ‘−5/3’ scaling in the ISR for large wavenumbers. The
relaxation time scales for momentum and heat fluxes are also found not to be identical. The
wavenumbers at which the relaxation time scales undergo transition from the ‘−2/3’ power-
law scaling to a constant differ formomentum and heat fluxes. The cospectral budgetmodel is
then generalized to accommodate these findings and to evaluate their impacts. Results show
that the existence of a ‘−1’ scaling law in the spectra of temperature primarily reduces the
value of Rfm. The dissimilarity in the relaxation time scales for momentum and heat fluxes
in terms of the transition wavenumber primarily alters the turbulent Prandtl number under
neutral conditions.

In Katul et al. (2014), Rfm was connected to the maintenance of Kolmogorov scaling in
the spectra of vertical velocity and temperature instead of being conventionally interpreted
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as the point at which the flow laminarizes. The experiments here support this view and agree
with other long-term field experiments (Grachev et al. 2013). However, it was not previously
evidentwhy the vertical velocity spectra collapse prior to their temperature counterpartswhen
Rf approaches Rfm. By collapse, we mean that the spectral shapes deviate appreciably from
their near-neutral or mildly stable counterparts. It is demonstrated here that the production
rate of TKE decreases more rapidly than that of TPE in the vicinity Rfm despite both being
quite small. This finding offers a new perspective in explaining why the vertical velocity
spectra collapse earlier than their temperature counterparts in the vicinity of Rfm.

More broadly, our results may also explain why dimensional considerations proved to be
effective in describing the bulk flow properties for mildly or moderately stable conditions,
but failed to do so when Rf > Rfm (Mahrt 2014). When the energy (kinetic and potential)
distribution of eddies experiences a ‘transition’ to another distribution function, as may occur
with the vertical velocity spectra when Rf > Rfm, dimensional considerations and similarity
theories may encounter difficulties in predicting the bulk flow properties. Beyond Rf > Rfm,
the shapes of spectra (and cospectra) actually change with changing Rf suggesting that a
unique eddy-energy distribution does not exist. Because of the links between these energy
distributions of eddies and macroscopic or bulk properties of the mean flow, the expected
range over which the universal character of stability correction functions or the turbulent
Prandtl number exists can be explained.
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Appendix: Data and Methodology

The datasets used were collected in the stably stratified ASL over a lake and a glacier surface.
These datasets include measurements of three-dimensional velocity and temperature at high
frequency (=20 Hz) and at four different heights. Details about the two datasets and quality
control measures can be found elsewhere (Vercauteren et al. 2008; Huwald et al. 2009;
Bou-Zeid et al. 2010; Li and Bou-Zeid 2011; Li et al. 2012a). In particular, data where
fluxes measured at the four heights differ by more than 10 % are excluded. Calculations
of turbulent fluxes follow the standard eddy-covariance method with an averaging interval
of 30 min (Li and Bou-Zeid 2011; Li et al. 2012a). Calculations of spectra and cospectra
for each 30-min segment follow the standard Fourier transform method (Stull 1988), which
are then smoothed using a periodic hamming window without overlap. The mean velocity
and temperature vertical gradients, which are needed in the calculations of Rf and relaxation
time scales, are obtained by fitting second-order polynomial functions to the mean velocity
and temperature at the four measurement levels and then taking the derivatives of the fitted
functions. A linear interpolation method was also used to compute the vertical gradients of
mean velocity and temperature and the results were found to be insensitive to the method of
evaluating the vertical gradients, which is consistent with Grachev et al. (2007). The datasets
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are separated into eight regimes according to Rf, as can be seen from Table 1. Since the lake
dataset primarily spans slightly stable tomildly stable conditions and the glacier dataset spans
mildly stable to very stable conditions, the first five stability regimes in Table 1 only include
data from the lake and the last three regimes only include data from the glacier set. Regime
e and regime f cover roughly the same range of Rf but the averaged Rf of all segments are
different: regime f has a much larger averaged Rf than regime e. The calculated spectra
and relaxation time scales for each segment are further averaged over each stability regime,
which are shown in Figs. 1, 2, and 3.
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