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ABSTRACT

The low-wavenumber regime of the spectrum of turbulence commensurate with Townsend’s ‘‘attached’’ eddies is

investigated here for the near-neutral atmospheric surface layer (ASL) and the roughness sublayer (RSL) above veg-

etation canopies. The central thesis corroborates the significance of the imbalance between local production and dissi-

pation of turbulencekinetic energy (TKE) and canopy shear in challenging the classical distance-from-the-wall scaling of

canonical turbulentboundary layers.Usingfiveexperimentaldatasets (twovegetationcanopyRSLflows, twoASLflows,

and one open-channel experiment), this paper explores (i) the existence of a low-wavenumber k21 scaling law in the

(wind) velocity spectra or, equivalently, a logarithmic scaling ln(r) in the velocity structure functions; (ii) phenomeno-

logical aspects of these anisotropic scales as a departure from homogeneous and isotropic scales; and (iii) the collapse of

experimental data when plotted with different similarity coordinates. The results show that the extent of the k21 and/or

ln(r) scaling for the longitudinal velocity is shorter in the RSL above canopies than in theASL because of smaller scale

separation in the former.Conversely, these scaling laws are absent in the vertical velocity spectra except at largedistances

from the wall. The analysis reveals that the statistics of the velocity differences Du and Dw approach a Gaussian-like

behavior at large scales and that these eddies are responsible for momentum/energy production corroborated by large

positive (negative) excursions in Du accompanied by negative (positive) ones in Dw. A length scale based on TKE

dissipation collapses the velocity structure functions at different heights better than the inertial length scale.

1. Introduction

Besides their importance for predicting the exchange

of matter and energy at the land–atmosphere interface,

near-surface atmospheric flows offer a unique setting in

the context of wall-bounded turbulence because of the

large separation between inertial/outer (e.g., d; 1000m)

and viscous (n/u*; 1mm) scales. In fact, neutrally

stratified atmospheric surface layer (ASL) flows are

often resorted to in pursuit of high–Reynolds number

(Re5 u*d/n) experiments that are otherwise difficult to

achieve in canonical turbulent boundary layers (e.g.,

Metzger and Klewicki 2001; Kunkel and Marusic 2006;

Marusic et al. 2010). Here,1 u*5
ffiffiffiffiffiffiffiffiffiffiffi
r21ts

p
is the friction
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velocity, d is the atmospheric boundary layer (ABL) height

(pipe radius or channel half-width in experimental fluids),

ts ’ 2 r uw is the shear stress at the surface, u and w are

the turbulent fluctuations of the longitudinal (streamwise)

and vertical (wall normal) velocity components around their

corresponding time-averaged values U and W, n and r are

the kinematic viscosity and density of the fluid, and the

overline or capital letters denote Reynolds (or time) aver-

aging. Nevertheless, at least from an observational

perspective, a one-to-one mapping of the scaling laws of

velocity spectra and/or structure functions from wall tur-

bulence to atmospheric flows has encounteredmixed and at

times contradictory findings. The notion that, away from the

viscous subrange, the distance from thewall z � n/u* is the

dominant similarity length scale for the intermediate

(z scaling) region is particularly challenged in near-surface

atmospheric flows. The latter argument is the focus of the

work here.

A relatively consistent and systematic theory of high-Re

wall-bounded turbulence seems to be currently endors-

able, at least with regards to the mean flow and second-

order turbulence statistics [recent reviews byMarusic et al.

(2010) and Jiménez (2012)]. A central tenet of this theory

is the existence of a self-similar inertial subrange (overlap

or intermediate region) at distance z (n/u* � z � d)

normal to the wall/surface, in which the characteristic ve-

locity and length scales are u* and z (Townsend 1961).

Both experimental and theoretical studies have supported

logarithmic scaling laws in this sublayer for the

mean U/u*5 k21 ln(z)1Cs (Prandtl 1925; von Kármán
1930), variance s2

u 5 u2 5B1 2A1 ln(z/d) (Townsend

1976; Marusic et al. 2013; Banerjee et al. 2015), and

more recently all higher even-order moments

(u2p)1/p 5Bp 2Ap ln(z/d) for p $ 1 (Meneveau and

Marusic 2013; Katul et al. 2016) of the longitudinal ve-

locity. The constant A1 (here inm2 s22) is thought

to be universal when made dimensionless such that

A1/u
2

*5 1:25 (Stevens et al. 2014; de Silva et al. 2015),B1

can depend on flow conditions, Cs is a wall/surface

roughness constant, and k ’ 0:4 is the von Kármán
constant. Of particular interest here is the logarithmic

scaling of s2
u and the associated k21 power law in the

spectrum Euu (k) at low wavenumbers k (typically in the

range 1/d,k, 1/z). The spectrum Euu (k) is defined

such that s2
u 5

Ð ‘
0
Euu(k) dk, and when single-point time

measurements are used, the wavenumber k5 2pf /U

corresponds to inverse longitudinal distance, inferred

from frequency f (time) measurements of sonic or hot-

wire anemometry by Taylor’s frozen turbulence hy-

pothesis (Taylor 1938). The two scaling laws follow

from Townsend’s model of attached eddies in the

equilibrium/logarithmic region, where larger-than-

inertial-scale coherent eddies of size z, s, d are

attached to the wall/surface and sense its effects

(Townsend 1961, 1976). Integrating Euu (k) } k21 in the

range 1/d# k# 1/z (attached eddies) recovers the

s2
u ; ln(z/d) scaling, and hence, the two are equivalent

(see alsoBanerjee andKatul 2013). It is worth noting that

the inner (n/u*), inertial (z), and outer (d) length scales

are used here as limits indicative of eddy sizes and tran-

sitions in spectral scaling laws rather than exact cutoff

length scales at which such transitions abruptly occur.

Perhaps the most popular explanation of the origin of

the k21 scaling in Euu (k) is the dimensional approach of

Perry et al. (1986) based on Townsend’s model of at-

tached eddies (Townsend 1961, 1976), that is, the exis-

tence of large separation between the scales of motion

or equivalently a sufficiently high Re. This k21 scaling

resides then between the very-large-scale motion

(VLSM)2 (Balakumar and Adrian 2007; Guala et al.

2011) (Euu } k0 for k, 1/d) and the finescale isotropic

eddies that follow Kolmogorov’s theory (Kolmogorov

1941, hereafter K41) [Euu } k25/3 for 1/z � k � 1/h,

where h5 (n3/«)1/4 is the Kolmogorov microscale, and

« is the rate of viscous dissipation of turbulence kinetic

energy (TKE) assumed equal to the mean rate of TKE

transfer across scales]. Several other phenomenological

(Nikora 1999) and theoretical (Tchen 1953; Katul et al.

2012)models also predicted or explained this k21 scaling

[Table 1 in Katul and Chu (1998) and Table 1 in

Drobinski et al. (2007) provide a survey of the litera-

ture]. Physically, at small vertical distances (close to the

wall/surface) within the logarithmic region, the prefer-

ential suppression of the vertical velocity fluctuations w

distorts large-scale coherent eddies of size s. z in the

streamwise direction, and turbulence becomes in-

creasingly anisotropic as the wall/surface is approached

(Davidson and Krogstad 2014). These anisotropic/at-

tached eddies are ‘‘active’’ in the shear production

(P52uw dU/dz) of TKE, where the interaction be-

tween the momentum flux (2 uw) and the mean flow

vorticity (dU/dz) mostly occurs. Hence, very close to the

wall/surface, the spectrum of the longitudinal velocity is

expected to exhibit three distinct ranges at scales much

larger thanh. In premultiplied form [i.e., kEuu(k)], these

are from small (high k) to large (low k) scales: (i)

kEuu(k)} «2/3 k22/3 for 1/z � k � 1/h. These isotropic

eddies are denoted as ‘‘detached’’ here (no wall ef-

fects); (ii) kEuu(k)} k0 for 1/d, k, 1/z commensu-

rate with the anisotropic production range. These

2VLSM is commonly referred to as inactive range/eddies be-

cause they do not contribute to stress and energy production.

However, this range is part of energy transport, and we simply use

VLSM to represent it. Perry and Abell (1977) called these non-

universal motion because of the lack of self-similarity.
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are denoted as ‘‘attached’’ eddies, and (iii)

kEuu(k)} k11 for k, 1/d (VLSM).

At the experimental front, several studies on ASL

flows reported a low-wavenumber k21 regime in Euu(k)

(e.g., Katul and Chu 1998; Högström et al. 2002;

Drobinski et al. 2004). Both Högström et al. (2002)

(their Fig. 5) and Drobinski et al. (2004) (their Figs. 6

and 7) show that the extent of the k21 range decreases

with increasing height above the surface, indicating that

as the surface is approached in the logarithmic layer, the

emergence of the anisotropic (k21) range comes at the

expense of a narrower isotropic (k25/3) extent (Davidson

and Krogstad 2014). Conversely, no k21 scaling was

detected in the Kansas (Kaimal et al. 1972) and some

other ASL experiments (Busch and Panofsky 1968). It is

also noticeable that Drobinski et al. (2004, 2007) ob-

served an Eww(k)} k21 scaling for the vertical velocity

spectra around 30m above the surface but not at lower

heights in the near-neutral ASL. In turbulent boundary

layer and pipe experiments, these mixed findings have

also received attention (e.g., Del Álamo et al. 2004;

Vallikivi et al. 2015, and references therein), mainly

from a perspective of Re (scale separation) dependence.

The elusiveness of a clear k21 scaling in Euu(k) has

recently refocused the attention on its physical-space

equivalent, the second-order structure function

Duu(r)5 [u(x1 r)2 u(x)]2 (definition in section 2)

(Davidson et al. 2006; Davidson and Krogstad 2009,

2014; de Silva et al. 2015; Chung et al. 2015; Pan and

Chamecki 2016; Chamecki et al. 2017). Here, where

single-point time series measurements are used, r5 tU

is the longitudinal separation distance, and t5 1/f is the

time separation. The functionsDuu(r) and Euu(k) can be

related by a simple Fourier transform (section 2), and

hence, the k21 power law is equivalent to a ln(r) scaling

in Duu(r) in the production range, while the k25/3 in the

finer-scale locally isotropic range is equivalent to the r2/3

law that appeared in K41. Davidson et al. (2006) argued

that the one-dimensional spectrum Euu(k) may not be

the ideal tool for investigating and detecting the k21

scaling because of large-scale (three dimensional) con-

tamination in the one-dimensional spectra, an effect

called aliasing. However, they were able to detect a

logarithmic scaling in the structure function in both

smooth- and rough-wall boundary layers in a wind tun-

nel experiment (Davidson and Krogstad 2014). The

structure function also has the advantage of bounded-

ness at large scales (r; d or the integral length scale of

the flow), where it flattens at 2s2
u (section 2). Beyond the

existence of this logarithmic scaling, the analysis and

experiments by Davidson and Krogstad (2014) showed

that normalizing r by the dissipation-based length scale

l« 5 u3

*/« collapses experimental data at different heights

better than z, especially in the anisotropic production

range. They attributed this deviation from the z scaling

to the imbalance between the local production P and

dissipation « of TKE and proposed a ln(P/«) correction

to the ln(r/z) scaling. The dimensional analysis and LES

experiments by Pan and Chamecki (2016) also showed

that l« is the appropriate scale in the neutral-roughness

sublayer of canopies (where P/«’ 3). Chamecki et al.

(2017) later confirmed the superiority of l« over the z

scaling in the unstable and stable ASL and found a k21

regime under stable conditions.

Although the k21 or ln(r) scaling laws and the asso-

ciated transition/similarity length scales are still a sub-

ject of debate in canonical turbulent boundary layers,

this paper identifies two aspects frequently encountered

in atmospheric contexts where such issues remain in-

conclusive. These are (i) the existence of vegetation

canopies where the flow in the roughness sublayer (RSL;

defined here to extend from the canopy top until two to

five canopy heights h) deviates appreciably from its ASL

counterpart and (ii) the imbalance between local pro-

duction and dissipation of TKE. While the two aspects

may be related, where typically P/« 6¼ 1 in the RSL of

canopy flows, this imbalance is also not uncommon close

to the surface in theASL (e.g., Högströmet al. 2002) and

can be on the order of 20% (Charuchittipan and Wilson

2009). The work here uses several experiments to dis-

cuss the existence of this k21 scaling in near-surface at-

mospheric flows, some of its phenomenological aspects,

and the possible collapse of experimental data when

plotted with inertial or some other similarity co-

ordinates. The discussion also includes the scaling laws

of the vertical velocity to characterize anisotropy. By

using the notation ‘‘near surface,’’ we intend to contrast

the near-neutral ASL above smooth and rough surfaces

(’1–10m above water bodies and short-grass fields),

denoted as the eddy surface layer (ESL) by Hunt and

Carlotti (2001) and Drobinski et al. (2004), with flows

in the immediate vicinity of tall roughness elements

(directly above vegetation canopies) (Fig. 1).

Turbulent motion in the RSL above a dense canopy

deviates from inertial-layer turbulence and is more

analogous to mixing layers than to rough-wall boundary

layers because of the strong shear at the canopy top

(inflection point in the mean velocityU) (Raupach et al.

1996; Poggi et al. 2004). This mixing-layer analogy in-

troduces an additional characteristic shear length scale

[ls 5U(dU/dz)21] dictated by shear instabilities initi-

ated at the canopy top (Fig. 1), besides the inertial length

scale z. For canopy flows, z is defined to be above the

zero-plane displacement height d0, where the latter is

the height from the ground associated with the mean

height of momentum absorption within the canopy.
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Hence, with the assumption that u* sets the inner

boundary condition for all scales of motion and is indeed

the characteristic velocity scale, the two aspects identi-

fied above reduce the discussion into an issue of length

scales that challenge the classical z scaling. Figure 1

shows the conceptual framework used here to distin-

guish between RSL and ASL flows, where at some

height z � n/u* above d0 for canopies, eddies larger

than z are attached to a displaced wall d0. Detached

eddies that are much smaller than z are isotropic and

follow the r2/3 law.

To this end, five datasets (section 3) are used here to

address the points raised earlier, namely, (i) the extent

and height dependence of the ln(r) (or k21) scaling

in the velocity structure functions (spectra), if any;

(ii) some of its phenomenological aspects related to

deviations from the characteristics of locally homoge-

neous and isotropic turbulence; and (iii) the collapse of

experimental data at different heights using several

dominant length scales. The experiments were con-

ducted in the RSL of vegetation canopies (two experi-

ments), close to the surface within the ASL (two

experiments), and one lower-Re open-channel experi-

ment for comparison with atmospheric flows. The work

is limited to near-neutral flows, which are a common

occurrence deep within the ABL above vegetation

canopies or water bodies, as opposed to convective cases

where the ABL is dominated by large-scale thermal

plumes (Ghannam et al. 2017; Salesky et al. 2017).

2. Definitions and theoretical framework

The coordinate system is defined such that x, y, and z

form the longitudinal (streamwise), lateral (spanwise),

and vertical (wall normal) directions, and the corre-

sponding fluctuating velocity components are u, y, andw

with Reynolds (time) averages U, V, and W. The mean

flow is stationary [›(�)/›t5 0], planar homogeneous

[›(�)/›x5 ›(�)/›y5 0 for averaged quantities], and x is

aligned with the mean flow U with no mean subsidence

such that V 5 W 5 0. With these assumptions, the

second-order structure function for a velocity compo-

nent a (a 5 u or w here) at some height z is given by

D
aa
(r)5Da(r)Da(r)

52s2
a[12 r

aa
(r)] ,

(1)

where Da(r)5a(x1 rêx)2a(x), x is the position vec-

tor, r5 tU is the longitudinal spatial separation inferred

from measured time separation (t), êx is the unit vector

in the x direction, and U is the local (height specific)

mean velocity. Since spatial statistics are inferred from

time measurements here, stationarity implies homo-

geneity, where all turbulence statistics, or otherwise

FIG. 1. Conceptual framework used to distinguish some features of canopy (roughness

sublayer) from wall-bounded (e.g., surface layer) flows. At some height z above the canopy,

eddies of size larger than z are considered attached to a displaced wall d0, while typically,

much smaller eddies are detached (isotropic here) and follow K41 theory. The analysis is

restricted to the mixing layer where Kelvin–Helmholtz (K-H) eddies are active. The velocity

(u and w) structure functions are interpreted as functions of the longitudinal separation

distance r5 tU, where t is time separation. Dimensions are not to scale, and h denotes

canopy height. The height z and the direction andmagnitude of the velocity components (red

and blue arrows) are chosen arbitrarily for illustration.
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distributions of velocity differences, are independent of

the time–space origin and are only functions of r. Both

this assumption and planar homogeneity require

[a(x1 r)]2 5 [a(x)]2 5s2
a, and raa(r)5a(x1 r)a(x)/s2

a

is the correlation coefficient that is the Fourier pair of

Eaa(k). The second-order structure function is a mono-

tonically increasing function, ranging from Daa(0) 5 0

at r5 0 [raa(0)5 1] to Daa(La)5 2s2
a at r5La

[raa(La)5 0], whereLa is the integral length scale of the

velocity component a. Note that Daa(r) is a measure of

the cumulative contribution of eddies of size r or less to

the energy (per unit mass) s2
a, and r dDaa(r)/dr is

roughly the energy contained in eddies of size r

(Townsend 1976; Davidson and Krogstad 2014). The

interest here is in the scaling laws of Daa(r) at differ-

ent heights z in the ASL and RSL and the transition/

similarity length scales associated with these laws. In

light of the earlier discussion, the scaling laws (see Fig. 1)

in the isotropic (detached eddies), active/production

(attached eddies), and VLSM ranges are, respectively,

D
uu
(r)5C«2/3r2/3, h � r � l , (2)

D
uu
(r)5B1A ln

�r
l

�
, l � r � d, and (3)

D
uu
(r)5 2s2

u 5 2
h
B

1
2A

1
ln
�z
d

�i
, r;L

u
; d , (4)

where C’ 2.2 is the Kolmogorov constant, A and B are

additional constants, and l is some characteristic length

scale. Since the structure function is commonly plotted

against ln(r), the constant A will be referred to as the

slope in Eq. (3). The dimensional analysis by Davidson

and Krogstad (2014), Pan and Chamecki (2016), and

Chamecki et al. (2017) showed that l} l« in Eq. (3) is the

correct similarity length scale for the production range.

Equations (3) and (4) follow from each other at scales

r;Lu ; d with l; z, and by matching the two scaling

laws, one obtainsA/u2

*5 2A1/u
2

*’ 2:5 (e.g., Chung et al.

2015; de Silva et al. 2015). The logarithmic scaling in

Duu(r) also follows from the assumption that the kinetic

energy of the space-filling attached eddies scales with

the momentum flux, such that r dDuu(r)/dr; u2

*, from

which Eq. (3) follows accordingly. Note that Eq. (2) can

be written as

D
uu
(r)

u2

*
5C

�
r

l
«

�2/3

, (5)

and by the universality of C, the dissipation length scale

l«(z)5 u3

*/«(z) collapses the inertial subrange (isotro-

pic detached eddies) of the normalized structure function at

different heights in the constant flux region (duw/dz’ 0).

For a logarithmic U(z), P52uwdU/dz’ u3

*/kz, and a

local balance between P and « implies that lP } l« } kz,

where lP 5 u3

*/P is the production length scale (Pan and

Chamecki 2016;Chamecki et al. 2017).The latter arguments

are the basis for the classical z scaling in the intermediate

region ofwall-bounded shear flows, andboth are challenged

herewhere turbulent flows in theRSLdeviate from inertial-

layer flows and P 6¼ «. Nevertheless, if dU/dz5 u*/kz is a

good approximation (more so for near-neutral ASL than

RSL flows), then the production length scale lP ’ kz,

the dissipation length scale l« 5 (P/«)kz, and the shear

length scale ls 5 (U/u*)kz. Equation (3) can be written

with l5 l« as

D
uu
(r)5B1A ln

�
r

l
«

�

5B2A ln

�
P

«

�
1A ln

�
r

kz

�
,

(6)

or with l5 ls,

D
uu
(r)5B1A ln

�
r

l
s

�

5B1A ln
�u*
U

�
1A ln

�
r

kz

�
,

(7)

respectively. In other words, besides the typical inertial

scaling ln(r/kz), l« accounts for the imbalance between

P and « with the term ln(P/«) [this correction appeared

in Davidson and Krogstad (2009) and Davidson and

Krogstad (2014)], while ls accounts for the effects of drag

(u*/U) at the canopy top.

To connect these various length scales (kz, l«, lP, and

ls) to turbulent eddies and scaling laws of velocity

structure functions, the phenomenology of the attached

eddies [Eq. (3)] as a departure from the well-studied

locally homogeneous and isotropic turbulence is also of

interest here. The latter finescale eddies (r � l) belong

to the stages of Richardson’s cascade where energy is

neither produced nor dissipated but simply transported

from larger eddies (r. l) that extract energy from the

mean flow down to the viscous scales (r;h). In this

respect, the probability density functions G[Da1(r)]

(a5 u or w) of the velocity differences are examined in

the locally isotropic (r � l) and anisotropic (r. l)

ranges (plus sign indicates velocity normalization by u*).

The skewness Sk[Da1(r)]5 (Da1)3/[(Da1)2]3/2 and ex-

cess flatness factors F[Da1(r)]5 (Da1)4/[(Da1)2]2 2 3
(excess is defined as above the Gaussian value of 3)

of these distributions are functions of the longitudinal

separation distance r and, hence, are indicative of the

transition between locally isotropic (non Gaussian)

and anisotropic (close to Gaussian) scales. Note that
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Sk[Du1(r)] for the longitudinal velocity component is

equivalent to the structure skewness S(r) defined as

(Obukhov 1949; Monin and Yaglom 1975)

S(r)5
D

uuu
(r)

[D
uu
(r)]3/2

, (8)

where Duuu(r)5 [u(x1 r)2 u(x)]3 is the third-order

structure function. Obukhov (1949) hypothesized that

S(r) is constant in locally homogeneous and isotropic

flows and proposed this constant-skewness assumption

as a closure to the Kármán–Howarth–Kolmogorov

equation (von Kármán and Howarth 1938; K41)

D
uuu

(r)2 6n
dD

uu
(r)

dr
52

4

5
«r , (9)

that relates the second- and third-order structure func-

tions in the universal (inertial and viscous) isotropic

range. At scales h � r � l within this range, the effects

of viscosity [second term in Eq. (9)] are negligible, and

Kolmogorov’s ‘‘4/5’’ law is recovered

D
uuu

(r)52
4

5
«r , (10)

such that, using Eqs. (2), (8), and (10), the skewness S(r)

in the inertial/isotropic range is roughly constant (Katul

et al. 1997, 2015)

S(h�r� l)’20:22, (11)

subject to some experimental uncertainty and Re ef-

fects. Deviations from these relatively established re-

sults for the inertial subrange are used to examine the

phenomenology of the anisotropic range. Experiments,

data, and methods of estimating the TKE dissipation

rate « and the dominant length scales are now presented.

3. Data and methods

This section reviews the main features of the five ex-

periments (published datasets) used in the analysis. Site

characteristics and flow conditions are summarized in

Table 1, and length-scale estimations are presented

here. The two canopy experiments have an order-of-

magnitude difference in canopy height h and are in-

tended to examine the effects of canopy morphology

and distance from the wall on the anisotropic range of

the velocity structure functions. The work is limited to

several heights above the canopy in the RSL. The ASL

experiments were conducted above a lake and a short-

grass field within 10m above the surface, whereas the

open-channel flow is used as a reference canonical tur-

bulent boundary layer. In RSL and ASL cases, the flow

is near neutral with atmospheric stability parameter

jz/Loj, 0:05, where Lo is the Obukhov length and z is

the highest measurement height.

a. Experiments

The five experiments are as follows:

d Amazonian canopy (AMA): The experiment was part

of theObservations andModeling of theGreenOcean

Amazon (GoAmazon) project, and its details are

documented in Fuentes et al. (2016), Freire et al.

(2017), and Gerken et al. (2018). The data were

collected during a field campaign at the Cuieiras

Biological Reserve, located 60 km north-northwest

of the city of Manaus, Brazil, between March 2014

and January 2015 at a 50-m-tall tower surrounded by a

dense primary forest. The average canopy height at

the measurement site is h’ 35m, with leaf area index

estimated to be between 5.7 and 7.3m2m22. High-

frequency time series of the three wind velocity

components within and immediately above the canopy

were continuously measured by nine triaxial sonic

anemometers (model CSAT3, Campbell Scientific,

Logan, Utah) between March 2014 and January

2015. The measurement frequency is 20Hz, and

approximate measurement heights are z/h 5 0.2,

0.39, 0.52, 0.63, 0.7, 0.9, 1, 1.15, and 1.38. Measure-

ments within the canopy are used here only for

estimating the displacement height d0, while the

structure function analysis is restricted to heights

TABLE 1. Site and experimental characteristics. Note that the columns correspond to z: approximate measurement height; h: average

canopy height; f: sampling frequency; time: run/block time length; runs: number of blocks analyzed; and the ranges of u*, U, and jLoj
across the runs. See section 3 for further details. Range of values of u* and U across all the runs calculated at the lowest measurement

height (z/h ’ 1 for canopies).

Expt z (m) h (m) f (Hz) Time (min) Runs u* (m s21) U (m s21) jLoj (m)

AMA 35, 40.25, 48.3 35 20 30 24 0.2–0.7 1–2.6 450–15 000

MAI 2.1, 2.8, 3.5 2.1 20 30 15 0.43–0.51 1.56–1.95 67–12 000

LAKE 1.65, 2.3, 2.95, 3.6 — 20 30 63 0.12–0.57 1.2–10.6 90–3000

AHATS 1.5, 3.3, 4.2, 5.5, 7, 8 — 60 36.4 15 0.2–0.4 2.42–5 170–15 000

OC 0.006, 0.01 — 100 1.365 1 0.009 0.2 —
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z/h 5 1, 1.15, and 1.38 within the RSL. A total of 24

data runs/blocks (30min each) were analyzed (see

Table 1).
d Maize canopy (MAI): This experiment was conducted

in a large flat field planted with maize near Mahomet,

Illinois, between June and July 2011 (Gleicher et al.

2014; Chamecki 2013; Pan et al. 2016). The average

canopy height is h ’ 2.1m, and the leaf area index

during the measurement period is ’3.3m2m22. The

three wind velocity components were sampled using

five triaxial sonic anemometers (model CSAT3,

Campbell Scientific) at a 20-Hz frequency. The ap-

proximatemeasurement heights are z/h5 0.33, 0.67, 1,

1.33, and 1.67, and similar to the AMA canopy, the

analysis is restricted to z/h $ 1. Pan and Chamecki

(2016) used a 7.5-h turbulence time series (u* 5
0.51m s21) from measurements at this site. Here, this

7.5-h data block is split into 15 runs (30min each) to

minimize possible effects of nonstationarity. These

runs are used as replicate realizations (see Table 1).
d Lake Geneva (LAKE): The measurements were

part of the Lake–Atmosphere Turbulent Exchange

(LATEX) field campaign over Lake Geneva, Swit-

zerland (Vercauteren et al. 2008; Bou-Zeid et al. 2008;

Li et al. 2016) and were collected on a 10-m-high

tower, 100m away from the shore of the lake. The

campaign lasted from mid-August until late October

2006. Four sonic anemometers (CSAT3, Campbell

Scientific) were deployed at heights of 1.65, 2.30, 2.95,

and 3.60m above the water surface to sample the

three-component wind field at 20Hz. The four mea-

surement heights are used here and a total of 63 runs

(30min each) are analyzed (Table 1).
d Advection Horizontal Array Turbulence Study

(AHATS): The experiment took place near Kettle-

man City, California, during the period from 25 July to

16 August 2008 (UCAR–NCAR Earth Observing

Laboratory 1990; Salesky and Chamecki 2012). The

field site was surrounded by short-grass stubble and

was predominantly horizontally homogeneous and

level. Data from the AHATS profile tower, consisting

of six CSAT3 sonic anemometers (Campbell Scien-

tific) mounted at heights z ’ 1.5, 3.30, 4.2, 5.5, 7, and

8m are used here. The sampling frequency was 60Hz,

and a total of 15 runs (36.4min each) are analyzed

(Table 1).
d Open channel (OC): The details of this experiment are

documented in Katul and Chu (1998) and Katul et al.

(2012). Briefly, the experiment was conducted at

Cornell University in a 20-m-long, 1.0-m-wide, and

0.8-m-deep open-channel tilting flume with a smooth

stainless steel bed. The channel slope was set at

0.0001mm21, resulting in hw5 10.3 cm of water depth.

The longitudinal and vertical velocity components

were measured using a two-dimensional split-film

boundary layer probe (TSI 1287W model). The sam-

pling frequency was 100Hz, and the measurement

period lasted for 1.365min at measurement heights

z 5 0.1, 0.2, 0.3, 0.4, 0.6, and 1 cm. Only the highest

measurement levels z5 0.6 and 1 cm corresponding to

z1 ’ 55 and 92 are used here, where z1 5 zu*/n and

u* 5 0.9 cm s21. The mean velocity is U ’ 0.2m s21,

and only one run is available.

The multiple runs for each experiment were selected

on the basis that (i) the momentum flux uw was rela-

tively constant with height (to within 10%), and hence, it

is assumed that the analysis is within the constant flux

region, and (ii) the corresponding turbulence intensity

Iu 5su/U is less than 0.25 across these runs, a common

practice to minimize the effects of using Taylor’s frozen

turbulence hypothesis. By assuming that all wave-

numbers (eddies) are convected with the same velocity

U, the longitudinal spatial separation r5 tU and

wavenumber k5 2pf /U are then inferred from the time

separation t (or f) and U. The corrections to the use of

Taylor’s hypothesis suggested by Wyngaard and

Clifford (1977) and Hsieh and Katul (1997) in the in-

ertial subrange are also implemented (discussed in the

next subsection). We also note that the uncertainty in

estimating u* from sonic anemometers and its slight

change with height are difficult to avoid in ASL exper-

iments. Nonetheless, in all our parameter estimations

and data normalization, local (height specific) values of

u* are used throughout.

In what follows, for presentation and brevity pur-

poses, we show results only from one individual run at

each site (with multiple heights each), and statistics

across all runs are presented whenever applicable. The

profiles of the mean flow statistics (normalized by ap-

propriate powers of u*) for this sample run are shown in

Fig. 2. The height z is normalized by canopy height h in

the top row of Fig. 2 for canopy experiments and by zh
for the ASL and open channel experiments (bottom

row), where zh is the highest measurement location

(zh 5 3.6m for LAKE, 8m for AHATS, and 1 cm for

OC; Table 1). A distinctive feature of canopy flows is the

strong shear at the canopy top, manifesting itself by a

much smaller U/u* (or equivalently higher turbulence

intensity) in the RSL (Fig. 2a) compared to the ASL

(Fig. 2e). All higher-order moments in the RSL

(Figs. 2b–d) follow typical profiles of plant canopies

[see a review by, e.g., Finnigan (2000)] and approach

their ASL counterpart as z/h increases. Themixed third-

order momentswuu andwwu in Figs. 2d and 2h, or more

precisely their gradients, are responsible for nonlocal
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transport of TKE and velocity variances. These mo-

ments are significant deep within the RSL and the ASL

and decrease with increasing height z, indicating that

P/« 6¼ 1 very close to the wall/surface.

b. Dissipation and length-scale estimation

From Wyngaard and Clifford (1977) and Hsieh and

Katul (1997), the structure functions inferred from

Taylor’s hypothesis are corrected in the inertial sub-

range for finite Iu, such that Eq. (2) becomes

Duu(r)5C[Fu(Iu)]«
2/3r2/3, where Fu(Iu)5 11 (11/9)I2u

and Iu 5su/U is the turbulence intensity. A similar

correction forDww(r) with Fw(Iu)5 11 (11/36)I2u is also

used. Since Iu , 0:25 for all experiments, Fu(Iu) across

all sites and runs is less than 1.08, and hence, the cor-

rections are reasonably small, well within the uncertainty

in the value of C’ 2:2. The inertial subrange is identified

from the compensated second-order structure function

r22/3Duu(r), which exhibits a relatively flat or constant

range equal to C«2/3 [see Eq. (2)], typically for 0.3 ,
r , 2m in the experiments here (depending on the

measurement height and sampling frequency). After

Chamecki and Dias (2004) and Chamecki et al. (2017),

the TKE dissipation rate « is then estimated by averaging

over this range, which extended for less than half adecade

close to the surface in the ASL and RSL to one to two

decades at higher z. Estimating « from the vertical ve-

locity structure function Dww(r) in a similar manner did

not result in any significant differences. However, esti-

mates from Duuu(r)52(4/5)«r in the inertial subrange

were unreliable because of the noisy nature of high-order

moments computed frommeasurements. Chamecki et al.

(2017), who also used the AHATS data, showed that

« estimates from Duuu(r) were approximately 30%

smaller (on average) than the ones from Duu(r). In the

rest of the paper, « values determined from the inertial

subrange of Duu(r) are used.

To estimate the displacement height d0 for the AMA

and MAI canopies, the momentum flux uw within the

canopy (0, z# h) was fitted to a fourth-order polynomial

in z, and the drag force Fd(z)5 duw/dz is determined (the

estimate is not sensitive to third- or fifth-order polynomial

fits). The height d0 is then calculated from

d
0
5

ðh
0

zF
d
(z) dz

ðh
0

F
d
(z) dz

, (12)

FIG. 2. Dimensionless profiles of mean-flow statistics for a select experimental run at each site/experiment (see Table 1) for (a),(e)mean

longitudinal velocity component, (b),(f) velocity variances, (c),(g) velocity skewness, and (d),(h)mixed third-order velocitymoments. The

normalizing scales are the friction velocity u*, canopy height h, and highest measurement location zh. (a)–(d) Amazonian (AMA; black;

h5 35m) andmaize (MAI; blue; h5 2.1m) canopy experiments. (e)–(h) Smooth- and rough-wall experiments for open channel (OC; red;

zh5 1 cm), AHATS (green; zh5 8m), and LakeGeneva (LAKE; cyan; zh5 3.6m). The velocity components u andw are represented by

the circle and triangle symbols, respectively. Note that full profiles are shown for canopy experiments but subsequent analysis is restricted

to flow above the canopy (z/h $ 1).
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as the mean height associated with momentum

absorption. The range for the AMA canopy is

0:73# d0/h# 0:79 (h ’ 35m) across the 24 runs and for

the MAI canopy is 0:69# d0/h# 0:74 (h ’ 2.1m) across

the 15 runs. This indicates that the distance from the

displaced wall d0 for the AMA canopy is between ’10

and 24m at the three measurement heights (see Table 1),

while the range is ’0.6–2m for the MAI canopy. Simi-

larly, the mean velocity (U) profile was fitted to a

second-order polynomial in ln(z) for all experiments,

from which the production and shear (only for cano-

pies) length scales are estimated as lP 5 u3

*/P and

ls 5U/(dU/dz), where P52uwdU/dz is used. For can-

opies, the mean velocity log-polynomial fits are limited

to z/h$ 0:9, where three data points are available in this

range (see Table 1). The dissipation length scale

l« 5 u3

*/« is calculated using the « estimates from Duu(r)

as discussed earlier. These z-dependent length scales,

normalized by the inertial length scale kz, are shown in

Fig. 3 for the data run presented above (Fig. 2). The ratio

lP/kz (filled-triangle symbols) is indicative of deviations

from a logarithmic mean velocity profile, and except for

the OC (Fig. 3e), where the highest measurement height

is z1 ’ 99 (z1 5 zu*/n), this ratio is close to unity at all

heights for the other experiments (Figs. 3a–d). In con-

trast, l«/kz, which is then approximately l«/lP 5P/«, de-

viates appreciably from unity deep within the RSL (less

so for the ASL) and approaches kz at higher heights.

The shear length scale ls follows l« closely in the RSL.

This finding was also noted in the LES runs of Pan and

Chamecki (2016) for the MAI canopy, although ls esti-

mated from the data here exceeded l« at the canopy top.

These length scales are used in subsequent sections to

explore the phenomenology and the collapse of the large

anisotropic scales.

Before presenting the results, it is worth noting that

when l« is estimated from the inertial subrange of the

longitudinal velocity structure function, it is bound to

collapse Duu(r) at small r. This collapse of data is not

necessarily the case for larger scales in Duu(r) and/or

Dww(r) that are of interest here.

4. Results and discussion

a. Scaling laws of velocity structure functions and
spectra

Since the ln(r) and/or k21 (k0 in premultiplied form)

scaling laws can be elusive when using experimental

data, Fig. 4 shows both the normalized structure func-

tion Duu/u
2

* and premultiplied spectra kEuu/u
2

* at all

measurement heights from each experiment. These are

plotted against r/kz and kz on a log–log scale and mul-

tiplied by an arbitrary constant (vertical shift) for clarity.

The r2/3 (Fig. 4a) and k22/3 (Fig. 4b) power laws expected

in the isotropic range are shown as solid gray lines to

depict the extent of this subrange and deviations

therefrom. Note that these are not data fits and are only

used here to indicate the commencement of the loga-

rithmic (or k21) scaling laws. Nevertheless, the loga-

rithmic fits in Fig. 4a (dashed gray lines) are not forced

to start at these scales (i.e., whereDuu deviates from the

r2/3 scaling) but rather fitted within a range at larger

r (between 3–8kz and 20kz) and the resulting linear

[in ln(r/kz)] fits are extended over a wider range. The

FIG. 3. Profiles of the ratio (l/kz) of several length scales l to the inertial length scale kz against (a),(b) z/h and (c),(d) z/zh for the

experimental run in Fig. 2. (a),(b) For canopies, kz is to be interpreted as the height above the zero-plane displacement.
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slopeA [Eq. (3)] of the fits to the anisotropic range in the

measured structure function (Fig. 4a) compares well

with the values (A’ 2:5) estimated from matching ar-

guments (e.g., de Silva et al. 2015), as introduced earlier

in section 2. Both Figs. 4a and 4b show that this aniso-

tropic range commences at scales larger than z (around

1.2z–5z depending on the experiment), as opposed to

the classical z scaling that typically assumes kz 5 1

(shown as vertical black line in Fig. 4b) sets such a

transition [e.g., the experiments by Katul and Chu

(1998)]. These are inferred from the approximate start

of this range, roughly 3, r/kz, 8 (Fig. 4a) and

0:2, kz, 0:3 (Fig. 4b), with no significant differences

between RSL and ASL experiments. However, canopy

cases (AMA and MAI) show a shorter k0 [or ln(r)]

range, extending for less than half a decade in both Euu

and Duu. This is due to the fact that the integral length

scale of the longitudinal velocity component Lu is much

smaller in the RSL than in the ASL, typically within

h,Lu , 3h in the former (Finnigan 2000) and Lu ; d in

the latter.

Conversely, similar analysis for the vertical velocity

(Dww and Eww) at the same measurement heights

shows a much smaller scale separation (Fig. 5). Al-

though the premultiplied spectra for the AMA, LAKE,

and AHATS experiments exhibit a short (less than

adecade) k0 range, the slope of the logarithmic fits to the

structure function Dww (Fig. 5) is smaller (A, 1), in-

dicating that Dww attains 2s2
w rapidly with increasing

scale. For these sites, kz’ 1 seems to set the end of the

k22/3 scaling, while this isotropic range extends to scales

larger than z (kz, 1) in the MAI and OC experiments.

Overall, after repeating such an exercise by examining

Daa and Eaa (a 5 u and w) for all data runs and all ex-

perimental sites, we note that using either approach

(from an experimental view) to hunt for the ln(r) or k21

scaling laws is elusive, and here, we contrast both means

in pursuit of that. In particular, the structure function is

commonly plotted against ln(r), and hence, fitting a

linear trend [Eq. (3)] over a short range of scales to find

the ln(r) law can be misleading. Theoretically, the sep-

aration of scales between the integral length scales La

and the upper limit of the inertial subrange, be it ’z or

some other limit/range l, is indicative of the crossover

between the r2/3 and 2s2
a regimes. This scale separation

is height dependent and increases with increasing

z (always close to the surface within the RSL or ASL).

Figure 6 depicts this argument, where both Duu (red

lines) and Dww (blue lines) are plotted at all available

measurement heights for each experiment, with the

FIG. 4. (a) Normalized structure function (Duu/u
2

*) of the longitudinal velocity component against r/kz at each

site/experiment for all measurement heights (see Table 1). Note that r is the longitudinal separation distance and z

is the distance from the surface/wall (or zero-plane displacement for canopies). The solid and dashed gray lines

denote the r2/3 (inertial range) and logarithmic law/fits (production range), respectively. (b) The corresponding

normalized and premultiplied spectra (kEuu/u
2

*) of the longitudinal velocity component plotted against kz, where k

is the longitudinal wavenumber. The solid gray lines denote the k11 (nonuniversal/VLSM range), k0 (production

range), and k22/3 (inertial range) power laws. All plots are shifted vertically by two decades (except AHATS data)

for clarity.
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lowest height at the bottom. In canopy cases (Figs. 6a

and 6b), deviations from the r2/3 (gray lines) power law

in bothDuu andDww have a short extent before reaching

the integral length scales Lu and Lw (shown as short

vertical lines). On the other hand, the ASL and channel

experiments (Figs. 6c–e) show an extensive overlap re-

gion for Duu but not Dww. Both integral length scales,

calculated empirically from the correlation function

raa(r), exhibit a minor change with height within the

RSL and ASL.

In addition to the existence and height dependence of

the logarithmic scaling in Duu, the slope A in Eq. (3) is

also of interest. This slope has dimensions of energy

density, where in the production range r dDuu(r)/dr5A,

FIG. 5. As in Fig. 4, but for the vertical velocity component.

FIG. 6. Normalized structure functions (Daa/u
2

*) with a5u (red) and a5w (blue) plotted against r/kz at all measurement heights for

(a) AMA (three heights), (b) MAI (three heights), (c) LAKE (four heights), (d) AHATS (six heights), and (e) OC (two heights). The

separation distances r5Lu (integral length scale for u component) and r5Lw (integral length scale for w component) are shown at each

height with a vertical dashed black line. The solid gray lines denote the r2/3 (inertial range) power law. All plots are shifted vertically with

the lowest measurement height at the bottom.

MARCH 2018 GHANNAM ET AL . 953



hence implying that the energy distribution across the

attached eddies is uniform. Since the logarithmic scaling

in Eq. (3) can be derived from the argument that in the

production range r dDuu(r)/dr; u2

*, it is argued that the

dimensionless slope A/u2

* is therefore universal (’2.5).

Figure 7 shows the value of A/u2

* obtained by fitting a

logarithmic scaling to Duu(r) at each measurement

height and each data run for the experiments here,

plotted against the local Reynolds number Re5 u*z/n

(where z is above d0 for canopies). Figure 7 depicts that,

on average, A/u2

* is close to the value 2.5 (black hori-

zontal line) at all heights/Re with a tendency for a slight

increase with height in theRSL. The scatter in the values

ofA/u2

* may be due to small uncertainties in estimations

of TKE dissipation rate and/or the use of Taylor’s hy-

pothesis, which may in turn affect the existence and

extent of a logarithmic scaling in Duu(r) (Pan and

Chamecki 2016). To disentangle the origins of this scale

separation and transitions between isotropic and aniso-

tropic scales, some phenomenological aspects of the

turbulence scales are discussed next.

b. Phenomenology of the anisotropic range

The age (or extent) of the anisotropic coherent

structures that follow the logarithmic scaling explored

earlier is the main theme of this section. As such, the

probability density functions (pdfs) of the velocity

differencesDu1(r) andDw1(r) are shown in Fig. 8 at two

separation scales: r � l« indicative of the detached iso-

tropic eddies and r � l« to sample anisotropic eddies.

These are for the highest measurement location at each

site as earlier. Both Du1(r) and Dw1(r) have a zero

mean, and the separation scales are chosen for illustra-

tion, where the length scale l« is used since it is typically

larger than z (P/«. 1); hence, r � l« is in the production

range. At small scales, the pdfs G[Du1(r � l«)] and

G[Dw1(r � l«)] (Figs. 8a and 8c) exhibit heavier tails

than at larger scales (Figs. 8b and 8d) for all sites. The

tails of small-scale turbulence are known to decay much

slower thanGaussian (Anselmet et al. 1984; Sreenivasan

and Antonia 1997) and approach a Gaussian distribu-

tion at larger scales. While the excursions/tails of Du1

and Dw1 appear smaller for canopies at r � l« than in

the ASL (Figs. 8a and 8c), these are simply due to a

higher u*; that is, canopy flows in fact experience larger

excursions in velocity differences at small scales, espe-

cially in the longitudinal velocity component u. The

importance of these individual pdfs here is that they

encode the statistical moments of turbulence in Du1(r)

and Dw1(r). For instance, the second moment (vari-

ance) of each of these distributions is the value of the

structure functionsDuu andDww at the scale r, which was

explored earlier in Figs. 4 and 5, such that the variances

[Du1(r)]2 and [Dw1(r)]2 at some large r are the

FIG. 7. Dimensionless slope (A/u2

*) of the logarithmic scaling (production range) inDuu(r) estimated from fits for

all available data runs at each site, plotted against the local Re5u*z/n. Each color denotes a height z or z/h for

canopies (see legend), and each filled circle symbol represents a single data block. The black horizontal line is the

universal value A/u2

*5 2:5.
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cumulative contribution from all the corresponding

distributions at smaller separation distances. To exam-

ine how fast the pdfs approach a Gaussian distribution,

the skewness Sk[Da1(r)] and excess flatness factors

F[Da1(r)] (a 5 u and w) of these distributions are

plotted against r/kz in Fig. 9. Both Sk and F have a de-

creasing trend with increasing scale r, indicating that the

pdf of velocity differences approaches a Gaussian-like

distribution at large r. Also, these moments generally

decay slower (with r) for the longitudinal [Du1(r)] than

the vertical [Dw1(r)] velocity differences because of

the larger scale separation in u compared to w. It is

interesting to note that the flatness factors F for both

velocity components collapse with kz in all experiments

and approach zero (equivalent to the Gaussian value 3)

around 10 kz. The AMA andAHATS experiments have

the largest scale separation between l« (vertical lines in

Fig. 9) or kz and the scale r at which the moments ap-

proach values close to a Gaussian distribution. These

experiments have the largest distance from the wall

(z 5 24m above d0 for AMA and z 5 8m for AHATS;

Table 1) compared to the other experiments, and note

that both exhibited a limited k21 scaling in Eww (Fig. 5).

In such contexts, no significant differences on scale

FIG. 8. The pdfs of the normalized (by u*) velocity differences: (a),(b) Du
1(r) and (c),(d) Dw1(r) at two selected

separation distances. In (a) and (c), the separation distance is r � l« (isotropic range), and in (b) and (d), r � l«
(anisotropic range). AGaussian pdf with zero mean and a variance equal to that of the data is shown by black lines.

Only the highest measurement height at each site is presented, and all plots are shifted vertically for clarity.

MARCH 2018 GHANNAM ET AL . 955



separation between the RSL and ASL seem noticeable,

but rather, the distance from the wall emerges as a more

important factor.

Besides the individual pdfs that characterize the sca-

lewise contribution to the diagonal elements (s2
u and s

2
w)

of the stress tensor through Duu and Dww, another im-

portant attribute is the stress/energy production by the

scales of motion. The anisotropic coherent eddies are

known to be the scales where turbulence (momentum

flux 2uw5 u2

*) interacts with the mean flow dU/dz to

produce energy/variances. As such, the mixed second-

order structure function Duw/u
2

*5Du1(x1 r)Dw1(x)

that involves lagged (in r) cross correlations between the

velocity components is now explored. Upon expansion,

this normalized structure function can be written as

D
uw
(r)

u2

*
5 22

u(x)w(x1 r)

u2

*
2

u(x1 r)w(x)

u2

*

’22 2
u(x)w(x1 r)

u2

*
,

(13)

where it is assumed that u(x1 r)w(x1 r)5 u(x)w(x) by

planar homogeneity, and the first term on the right-hand

side is 2u(x)w(x)/u2

*5 2. Also, after examination of the

data from all experiments and at all available heights,

the assumption u(x)w(x1 r)’ u(x1 r)w(x) appears

reasonable here (data not shown). Hence, at very small

scales (e.g., r � l« or z; isotropic range), the velocity

components u and w are well correlated and

u(x)w(x1 r)’ u2

*, indicating no contribution to the

momentum flux u(x)w(x) from these small eddies. As

r increases and the velocity components decorrelate

[i.e., the second term in Eq. (13) decreases to zero], the

larger-scale eddies cumulatively contribute to the mo-

mentum flux. This argument is investigated here by

sampling the isotropic and anisotropic eddies in an

analogous manner to the usual quadrant analysis of

(u, w) fluctuations, typically used for characterizing

ejection–sweep events. Figure 10 shows such a scalewise

analysis forDu1(r) andDw1(r). The scatterplots of these

quantities against each other in the isotropic (r � l«;

Fig. 10b) and anisotropic (r � l«; Fig. 10c) scales suggest

that at small separation distances r, the contributions

from the four quadrants in Fig. 10b to the product

Du1Dw1 cancel each other, while at r � l«, the second

(Du1 , 0, Dw1 . 0) and fourth (Du1 . 0, Dw1 , 0)

quadrants dominate the contribution to the negative

momentum flux. This picture is consistent across all

experiments. Figure 10a shows the joint pdfs of

(Du1, Dw1) for the scatterplots in Figs. 10b and 10c,

with the filled/colored contours representing the iso-

tropic scales in Fig. 10b and the gray contours corre-

sponding with the energy-producing eddies in Fig. 10c.

FIG. 9. (a),(b) Skewness (Sk) and (c),(d) excess (above Gaussian value of 3) flatness factor F of the distributions

of velocity differences as a function of r/kz. Different sites are represented by colors consistent with Fig. 8. The

vertical lines correspond to r5 l« at each site.
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FIG. 10. (a) Joint pdfs of Du1(r) and Dw1(r) in the isotropic (r � l«, colored contours) and anisotropic (r � l«, gray

contours) eddies at the highest measurement level for each experiment. The joint pdfs in (a) are calculated based on

the scatterplot of Du1(r) and Dw1(r) in (b) isotropic (r � l«) and (c) anisotropic (r � l«) range.
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The analysis in Fig. 10c (or gray contours in Fig. 10a)

shows that within the large-scale coherent eddies, it

is the simultaneous occurrence of strong excursions/

gradients in Du1, be these positive or negative, accom-

paniedwith strong excursions inDw1 of the opposite sign,

that lead to shear production. By examining the second

(Du1 , 0, Dw1 . 0) and fourth (Du1 . 0, Dw1 , 0)

quadrants in Fig. 10c, it appears that the two mecha-

nisms, namely, large negative Du1 excursions accom-

panied by large positive Dw1 ones (second quadrant;

analogous to ejection events), or the opposite (fourth

quadrant; analogous to sweeping events) are equally

likely to produce momentum.

As opposed to the usual quadrant analysis of the

ejection–sweep cycle that does not account for scalewise

contributions, the analysis here samples all eddy sizes

and reflects on their role in shear/energy production. For

instance, the lagged cross correlation 2u(x)w(x1 r)/u2

*
[second term in Eq. (13)] is shown in Fig. 11 for all ex-

periments and at all heights. The OC experiment be-

haves similarly to ASL experiments and is no longer

included in the analysis here for brevity. At small

scales (’r, kz in Fig. 11), the velocity compo-

nents u(x) and w(x1 r) are well correlated and

u(x)w(x1 r)’ u(x)w(x)5u2

*, while as r increases,

larger eddies accumulate momentum until r;Lu

(shown as vertical dashed lines in Fig. 11). Within the

anisotropic range, it is evident that shear production is

stronger at the larger-scale coherent motion and de-

creases as eddies cascade to smaller scales until isotropy

is attained and no more shear is produced. It is worth

noting that these shear-producing eddies extend to a

wider range (about twodecades) in the ASL (Figs. 11c

and 11d) than in the RSL (about onedecade) (Figs. 11a

and 11b), where Lu is smaller in the latter.

The last two components of the phenomenology of the

anisotropic range relate the structure functionDuu(r) to

its third-order counterpartDuuu(r) through the structure

skewness S(r) [Eq. (8)] and to the vertical velocity

structure function Dww(r). Both are well studied in the

isotropic range where S(r)’20:22 and Duu/Dww ’ 3/4

(ratio of the Kolmogorov constants for Duu and Dww in

the universal isotropic range). Figure 12 shows the

negative of the skewness S(r) as inferred from Eq. (8)

plotted against r/kz for all the experiments. The length

scales l«, ls, andLu for the highest measurement location

are also shown. The value S(r)’20:22 seems a satis-

factory approximation at small scales, particularly for

the ASL experiments (Figs. 12c and 12d), while it is

slightly lower in the RSL (Figs. 12a and 12b). Deviations

from this value occur at or before r’kz and decay faster

in the RSL above canopies than in the ASL. There is no

FIG. 11. Lagged cross correlation u(x)w(x1 r) (note the negative sign) in Eq. (13) normalized by u2

* at all heights

for each experiment. The dashed vertical lines correspond to the integral length scale Lu at each height, with their

colors matching the legend for heights.
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strong height dependence in S(r), although it is notice-

able that the inertial length scale kz collapses S(r)

at different heights in the ASL but not in the RSL.

The negative values of S(r) in both the isotropic

(’20.22) and anisotropic ranges indicate that

Duuu(r)5 [u(x1 r)2 u(x)]3 , 0, and hence, at these

scales, the magnitude of both negative and positive ex-

cursions in the longitudinal velocity fluctuations tend to

decrease. Similar analysis for Duu/Dww (Fig. 13) shows

that this ratio is close to the expected ‘‘3/4’’ constant in

the isotropic range and departs fast from this constant

around r’kz. At those larger scales, if Duu exhibits a

logarithmic scaling while Dww attains 2s2
w, the ratio

Duu/Dww should also show a logarithmic scaling in r. This

seems to be the case for all experiments except for

AMA, which exhibits a logarithmic scaling in Dww. The

ratio Duu/Dww approaches the constant (su/sw)
2 (cal-

culated from the data and plotted as dashed horizontal

lines in Fig. 13) at the very large scales, indicating a

reasonable convergence of the scalewise fluctuations to

bulk turbulence statistics.

c. Similarity length scales

Figure 14 shows the collapse of Duu/u
2

* measured at

different heights when plotted against r/kz (Fig. 14a)

and r/l« (Fig. 14b) for each experiment. The ensemble

averages (across all data runs; see Table 1) of the profile

of P/«’ l«/kz are also shown as insets to the figure. In

Fig. 14a, it is clear that the inertial length scale kz does

not collapseDuu/u
2

* at different heights, especially in the

RSL of canopy experiments (AMA and MAI) where

P/« deviates appreciably from unity. However, at a given

height in each experiment (indicated by a single color;

e.g., red color for z/h5 1 in AMA experiment), the

structure functions from different realizations/runs fall

onto a single curve, indicating that normalization by u2

*
(different across runs) collapses Duu at the same height.

Note that the LAKE data may suffer from wave effects

that lead to some nonstationary effects (noticeable in

Fig. 14). In contrast, the length scale l« performs much

better in collapsing the height-dependentDuu/u
2

* in both

the RSL andASL (cf. Figs. 14a and 14b), albeit there are

small departures at large r. Since l«/kz. 1 very close to

the surface (or d0) and approaches unity with increasing

height, the effect of l« on shifting the structure functions

is more pronounced at lower heights. For instance, the

extent ofDuu/u
2

* in the region r/l« , 1 (vertical black line

in Fig. 14b) is wider by at least half a decade than its

r/kz, 1 counterpart (Fig. 14a), indicating that, as op-

posed to kz, l« shiftsDuu/u
2

* to the left (more so for lower

FIG. 12. The negative of the structure skewness in Eq. (8) for the atmospheric experiments plotted against r/kz at

eachmeasurement height on a log-linear scale. The length scales l«, ls, andLu are shown as solid, dashed, and dash–

dotted red lines, respectively. These are from the highest measurement height in each experiment for illustration.

The value S(r)’20:22 [see Eq. (11)] expected in the isotropic range is shown as a black dashed horizontal line in

each panel.
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heights where l« is larger) to bring all the curves to-

gether. A similar conclusion can bemade for the vertical

velocity structure function Dww/u
2

* (shown in Fig. 15),

where by comparing Figs. 15a and 15b, the experimental

data can be seen to collapse better when normalizing r

by l«. To this end, Fig. 16 compares the performance of l«
with the shear length scale ls (constant with height) in

collapsing Duu/u
2

* for the canopy experiments only.

While ls appears to perform better than kz in the RSL

(see Fig. 14), the dissipation length scale l« remains a

better similarity coordinate, indicating that the imbal-

ance between local production and dissipation of TKE is

the main mechanism of deviations from the classical z

scaling.

5. Conclusions

This paper examined the classical arguments of

Townsend’s ‘‘attached’’ eddy model for the larger-than-

inertial coherent motion in near-surface atmospheric

flows. In particular, the scaling laws, phenomenology,

and similarity of these attached anisotropic eddies are

explored in the near-neutral roughness sublayer (RSL)

above dense vegetation canopies and in the atmospheric

surface layer (ASL) over a short-grass field and a lake.

As opposed to canonical turbulent boundary layers,

where in the intermediate/inertial region the distance

from the wall z is the similarity length scale, the focus

was on the importance of additional similarity scales

that emerge in near-surface atmospheric flows.

In the inertial layer, the large anisotropic scales of

motion are known to exhibit a k21 power law in the

spectrum of the longitudinal velocity Euu(k) at moder-

ately low wavenumbers k, typically at kz, 1, or

alternatively a logarithmic scaling in the corresponding

structure function Duu(r); ln(r) at large separation

distances r. z. It was shown in prior studies that the

crossover from the aforementioned large scales to in-

ertial subrange scales is rather narrow and reasonably

delineated by z. This z scaling was examined here in

the RSL and ASL when production and dissipation of

turbulence kinetic energy are not in local balance,

leading to additional length scales such as the dissipa-

tion (l« 5 u3

*/«) length scale and the mixing/shear

[ls 5U(dU/dz)21] length scale in the case of canopies.

Five experiments (four atmospheric flows and one open-

channel experiment), with multiple heights andmultiple

realizations/runs each, were used here to explore these

FIG. 13. Ratio of the structure functionsDuu/Dww plotted against r/kz at each measurement height on a log-linear

scale. As in Fig. 12, the length scales l«, ls, andLu are shown as solid, dashed, and dash–dotted red lines, respectively.

The horizontal dashed lines represent the ratioDuu/Dww 5 (su/sw)
2 (calculated from the data) expected at the very

large scales, while black horizontal lines correspond to Duu/Dww 5 3/4 in the isotropic range.
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aspects. The findings indicate that both k21 inEuu and/or

ln(r) in Duu exist within the RSL, ASL, and canoni-

cal turbulent boundary layers, although the extent

of this range varies across experiments, with the RSL

exhibiting shorter extent because of the small sepa-

ration of scales (the integral length scale is smaller

than its ASL counterpart). Conversely, these scaling

laws are absent in Eww or Dww for the vertical velocity

FIG. 14. Log–log plots of the normalized structure functions Duu/u
2

* at all measurement heights and all realizations/

runs plotted against (a) r/kz and (b) r/l«. See Table 1 for the number of data runs and measurement heights at each site.

The color code is such that red, blue, green, cyan, magenta, and yellow represent, respectively, increasing heights at each

site. Plots are shifted vertically by twodecades (except AHATS) for clarity. (inset) Vertical profiles of the ratioP/«, with

circle symbols in (a) and (b) indicating the MAI canopy and AHATS experiments, respectively, and triangle symbols in

(a) and (b) indicating the AMA canopy and LAKE experiments, respectively.

FIG. 15. As in Fig. 14, but for Dww/u
2

*.
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components except at large distances from the wall,

where a short extent of a k21 regime in Eww or ln(r) in

Dww emerges.

Phenomenological aspects of the coherent eddies reveal

that the statistics of velocity increments Du and Dw
approach aGaussian-like behavior at large r. These findings

are in broad agreement with the accepted picture of ca-

nonical turbulent boundary layers. Eddies associated with

these large anisotropic scales are shown to be further re-

sponsible for momentum/energy production corroborated

by large positive (negative) excursions in Du accompanied

by negative (positive) ones in Dw. In terms of similarity,

normalizing the separation distance r by the inertial length

scale kz did not collapse the structure functions Duu and

Dww at different heights within the RSL and ASL, defying

therefore the classical z-scaling picture in this context of

imbalance between local TKE production and dissipation.

The length scale l« 5u3

*/« shows an improved performance

in collapsing these structure functions at different heights in

both the RSL and ASL, owing to the fact that l« accounts

for the aforementioned energy imbalance. Despite the dif-

ficulty in accurately estimating l« from experimental data,

this scale represents a theoretical alternative to the z scaling

in wall-bounded flows up to heights where it converges to

the inertial scale kz.
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