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Abstract Eddy covariance (EC) provides ecosystem-scale estimates of photosynthesis (Ph) and
evapotranspiration (ET; the sum of plant transpiration [T] and evaporation [Es]). Separating ET into its
components is becoming necessary for linking plant-water use strategies to environmental variability. Based
on optimality principles, a data-model based approach for partitioning ET was proposed and independently
tested. Short-term responses of canopy-scale internal leaf-to-ambient CO2 (χ) were predicted based on a
big-leaf representation of the canopy accounting for the influence of boundary-layer conductance. This
representation allowed investigating stomatal behavior in accordance with the Ph estimates. With the
objective of minimizing the carbon cost of transpiration, a novel optimization approach was implemented to
develop solutions for an optimal stomatal conductance model as the basis to derive T. The Es was then
calculated as a residual between the observed ET and modeled T. The proposed method was applied to
long-term EC measurements collected above a Mediterranean tree-grass ecosystem. Estimated Es agreed
with independent lysimeter measurements (r = 0.69). They also agreed with other partitioning methods
derived from similarity theory and conditional sampling applied to turbulence measurements. These
similarity schemes appeared to be sensitive to different χ parameterization. Measured Es was underestimated
by 30% when χ was assumed constant (= 0.8). Diel and seasonal χ patterns were characterized in response to
soil dryness. A surprising result was a large Es/ET throughout the seasons. The robustness of the results
provides a new perspective on EC ET partitioning, which can be utilized across a wide range of climates
and biomes.

1. Introduction

The role of plants in mediating the hydrological cycle at different spatial and temporal scales is rarely in
dispute as evidenced by a number of reviews discussed elsewhere (i.e., Katul et al., 2012). Above land
surfaces, water vapor exchange between the biosphere and atmosphere is mostly in the form of
evapotranspiration (ET), an aggregated process consisting of transpiration from the plant (T) and evaporation
from the soil and/or other wet surfaces (Es). The relative contribution of these two components to ET remains
a subject of inquiry and active research (Schlesinger & Jasechko, 2014). Recently, Wei et al. (2017) highlighted
that current global mean T/ET estimates are largely uncertain, varying from 24% to 90% depending upon the
method used for ET partitioning. Unsurprisingly, similar ranges can be explained at the local scale by
ecosystem heterogeneities, fractional vegetation cover, and hydrological states of the ecosystem
(Berkelhammer et al., 2016). Berkelhammer et al. (2016) observed a lack of consistent trend in the time series
of T/ET, suggesting that Es and T are, to some extent, tightly coupled. Scott and Biederman (2017) showed
that T/ET is seasonal in arid sites and might vary from 23% to almost 60% due to frequency and timing of
rainy days and the degree of vegetation cover. Using carbonyl sulfide measurements, Wehr et al. (2017)
reported that Es peaked during drought conditions with a contribution of up to 40% of the total ET. Air
temperature was suggested as a primary factor explaining this pattern. Using stable oxygen isotopic
measurements, Dubbert et al. (2014) showed that even though Es was suppressed by vegetation, it was a
large contributor to total ET during the growing season. These contrasting results might reflect both
uncertainties resulting from the method used for ET partitioning (many are scale-dependent), the vegetation
spatial distribution on the land surface, the soil type and soil moisture state, and the differential sensitivities
of T and Es to their respective driving forces. The need for a comprehensive analysis of ET components with
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standardized methods that facilitate evaluation at the required spatial and temporal scales is becoming
urgent (Fisher et al., 2017).

The partitioning of ET into Es and T remains challenging due to several limitations and uncertainties of the
current measurement techniques. With the constellation of eddy covariance (EC) flux sites networks, ET is
available across many biomes and ecosystem types (Baldocchi et al., 2001). Relative to the widely used
CO2 flux partitioning methods that interpret both gross photosynthesis (Ph) and respiration from the net
CO2 fluxes (Lasslop et al., 2010; Reichstein et al., 2005), disentangling EC water fluxes remains challenging
due to the limited ability to separately constrain T and Es. For example, in the absence of photosynthetically
active radiation, net CO2 fluxes reflect ecosystem respiration rates thereby allowing nighttime EC measure-
ments to be used to infer daytime respiration (but subject to many conditions and qualifications).
However, in the case of water vapor fluxes, nighttime transpiration and evaporation can persist and often
comprise up to 10% of daytime ET (de Dios et al., 2015; Novick et al., 2009).

Regardless of the methodological differences, existing EC-based approaches exploit correlations between
CO2 and water vapor exchange rates premised on the fact that during daytime, Ph and T follow similar path-
ways at the leaf scale. A case in point is the recent work by Zhou et al. (2016) who developed an ET partition-
ing strategy based on the concept of underlying water-use efficiency (uWUE; the Ph to ET ratio normalized by
the root square of vapor pressure deficit [VPD]). Primary assumptions of the method are that (i) uWUE is con-
stant over time and (ii) it can be retrieved from the net EC fluxes whenever the influence of Es is minor and
ET ≈ T. Given the increasing evidence that Es is rarely negligible and that uWUE is not an intrinsic property
of plants, such partitioning method might not be viable in arid ecosystems (Dubbert et al., 2014; Perez-
Priego et al., 2017; Scott & Biederman, 2017). Unlike the method proposed by Zhou et al. (2016) that forces

the intercept of the linear fit between Ph
ffiffiffiffiffiffiffiffiffi
VPD

p
and ET through the origin (ET = 0 when Ph = 0), Scott and

Biederman (2017) found that the intercept between Ph and ET may be used in deriving Es for water-limited
sites. They showed that the intercept followed a seasonal pattern related to leaf area index and soil moisture

conditions. Note that PhET represents the ecosystem level WUE, while the form Ph
ET

ffiffiffiffiffiffiffiffiffi
VPD

p
(inherited from optimal

approaches; Hari et al., 2000; Katul et al., 2009; Medlyn et al., 2011) is alternatively used to express the intrinsic
WUE. It is well known that ecosystem and whole-plant level WUE is highly dynamic and varies not solely in
response to the evaporative demand but on a combination of physiological (Reichstein et al., 2003;
Villalobos et al., 2012) and/or structural properties of the vegetation (Beer et al., 2009; Migliavacca et al.,
2009). Even at the leaf scale, WUE varies with a number of environmental factors and physiological para-
meters as discussed elsewhere (Katul et al., 2010; Prentice et al., 2011).

Alternatively, the flux variance similarity (FVS) method employs a combination of turbulence scaling argu-
ments and prior information of WUE, typically from leaf observations, to numerically solve water fluxes from
high-frequency EC data (Scanlon & Kustas, 2010; Scanlon & Sahu, 2008). Although the method has been suc-
cessfully applied to different ecosystem types (Scanlon & Kustas, 2010; Sulman et al., 2016; Wang et al., 2016),
the accuracy of the method remains dependent on prior knowledge of plant WUE (Anderson et al., 2017).
Also, the method assumes that the turbulent Schmidt numbers for CO2 and water vapor are identical
(Reynolds analogy), which may be questionable in nonideal meteorological conditions due to variability in
sources and sinks near the ground and dissimilarity in entrainment fluxes.

From a physiological perspective, stomatal control of χ (the internal to ambient CO2) and thus WUE is a cor-
nerstone concept for water partitioning strategy. Stomatal behavior rests on observed relations between sto-
matal conductance, photosynthesis, and their environmental dependencies (Ball et al., 1987; Jarvis &
McNaughton, 1986; Leuning, 1995; Wong et al., 1979). However, model parameters represent certain (typi-
cally favorable) situations but cannot interpret the underlying mechanisms leading stomata to functionally
adapt and behave differently under contrasting conditions (Buckley, 2017). Based on the long-standing
Cowan’s hypothesis of the coupled plant carbon-water economies, an optimal stomatal behavior is predicted
from the notion that plants maximize carbon gain for a given amount of available water (Cowan & Farquhar,
1977). Unlike empirical approaches, this optimality-based approach assumes that intrinsic properties and
adaptive mechanisms can be described from a general hypothesis not rooted in a particular data set or spe-
cies (Prentice et al., 2014). As supported by a comprehensive global δ13C data set, the χ, a key aspect of WUE,
can be described from the aforementioned optimality principles (Wang et al., 2017). Moreover, responses of
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plants to elevated atmospheric CO2, salinity, temperature, nutrient amendments, droughts, and other
environmental controls have been acceptably reproduced from the aforementioned optimality arguments
(Katul et al., 2010; Manzoni et al., 2013; Palmroth et al., 2013; Volpe et al., 2011; Way et al., 2011).

The underlyingmotivation of this study is to predict WUE so as to derive optimal T estimates thereby allowing
partitioning of EC-based ET. Subsequently, ecosystem level Es can be determined as a residual between T and
ET. The challenges are, however, to test whether this approach applies to the temporal (i.e., diurnal variation)
and spatial (from leaf to the canopy) scales as resolved by EC fluxes. Furthermore, the influence of the bound-
ary layer conductance has been largely disregarded by optimal stomatal models, which have been developed
by assuming that leaves are perfectly aerodynamically coupled, and it requires further consideration (Buckley
et al., 2017). Hence, the specific goals here are twofold:

1) Develop a physiologically based EC water flux-partitioning scheme based on optimality principles, and
2) Evaluate the interplay between T and Es across different environmental and climatic conditions.

A dedicated experiment in a Mediterranean tree-grass savanna ecosystem fully equipped with EC measure-
ments along with independent lysimeter estimates of Es described elsewhere (Perez-Priego et al., 2017) is
used. Estimates of modeled WUE are used in the FVS (Scanlon & Kustas, 2012; Scanlon & Sahu, 2008) to pre-
dict T and Es and to benchmark the method proposed here against different WUE parameterization schemes
and assumptions.

2. Material and Methods
2.1. Model Development

The water flux-partitioning approach includes the following considerations and assumptions:

(1) An expression derived from the optimality theory is used to determine a site-specific long-term effective
internal leaf-to-ambient CO2 mixing ratio at the canopy scale (hereafter χo; equation (1) in Figure 1; Wang
et al., 2017). This effective χo is to be interpreted here within the context of a big leaf representation and
considered as the basis to solve for the canopy stomatal conductance (gc) control of the exchange rates
of Ph and T (equation (1)–(7) in Figure 1).

Figure 1. Conceptual workflow of the evapotranspiration (ET) water flux-partitioning approach. While the four model
parameters (a1, a2, a3, and β) are depicted in red color, the main variables used are represented in green color
(equations (1)–(4)). Those include vapor pressure deficit (D), air temperature (Temp), elevation (Z), and photosynthetic active
radiation (Q). Phmax stands for the maximum photosynthetic rate (Ph) observed over a 5-day window and estimated
from the ninetieth percentile of the data. Optimal estimates of transpiration rates (T) are determined from the modeled gc
(for water vapor) according to equation (6). Evaporation is then calculated as the residual between the observed ET and
estimates of T (equation (7)). A full description of the equations is provided throughout the text.
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(2) The computed χo accommodates short-term kinetic adjustments (i.e., hours and seasons; equation (2) in
Figure 1). There is some evidence that canopy-scale χ derived from ecosystem fluxes might exhibit diel
patterns in response to variations in ambient vapor pressure deficit (Tan et al., 2017), which also agree
with leaf-level observations (Fites & Teskey, 1988; James & Gifford, 1983; Jones, 1998; Katul et al.,
2009). Different mathematical forms describing the dependence of χ with vapor pressure deficit can
be found elsewhere (Katul et al., 2000; Leuning, 1990; Medlyn et al., 2011; Prentice et al., 2014).

(3) Short-term χ variations can be considered as part of the plant optimization problem and without the
need of ignoring the boundary layer conductance influence.

(4) Environmental dependencies of gc, represented by a Jarvis type formulation, are constrained in accor-
dance with the inferred EC Ph pattern (equation (1)–(5)). Optimality theory is traditionally used for pre-
dicting gc (Katul et al., 2010) when the physiological/photosynthetic properties of the plants are
known. However, it is to be noted that we derive optimal predictions of χ while gc is solved from its close
relation with inferred Ph and their environmental dependencies. To this end, the Jarvis model is selected
only to link environmental parameters to gc (and other models can be used as well) without requiring the
photosynthetic parameters. This data-model based approach provides stomatal conductance estimates
(for water vapor) that eventually can be used to infer optimal T (equation (6)). Finally, Es is calculated as
the residual between T estimates and ET observed by EC (equation (7)).

(5) Finding the numerical solution for the optimal set of parameters (β, a1, a2, and a3) in equations (2) and (4)
over a 5-day window that satisfies the objective function of minimizing T while maximizing Ph is posed
here as part of the parameter optimization problem. This approach is in contrast to the original problem
of solving the optimal pattern of stomatal aperture variation in time for prescribed time-varying environ-
mental parameters. Instead, the model parameters (β, a1, a2, and a3) are to be determined in a manner
that minimizes T while maximizing Ph over the overall period of interest. The way we apply this premise
to EC data as well as the estimation of the parameters is further detailed throughout this section.

The approach commences from Ph—the only known stomatal flux that can be inferred from EC data
(Reichstein et al., 2005)—assumed to be represented as follows:

Ph ¼ ρagcCa 1� χð Þ; (8)

(note that equations (1)–(7) are reported in Figure 1) where Ph is a molar flux density (μmol CO2 · m
�2 · s�1), gc

is the canopy stomatal conductance (m/s), Ca is the ambient CO2 mixing ratio (μmol CO2/mol), and ρa is the
molar air density (mol/m3). A list of symbols is given in Table 1.

According to equation (8), the two unknowns are χ and gc. There is now sufficient evidence to argue that χo
may be described by a general function, at least for C3 plants (Prentice et al., 2011; Wang et al., 2014, 2017).
This justifies lumping mixed vegetation surfaces (e.g., tree-grass ecosystem) as a big-leaf provided their
photosynthetic machinery is C3. The least-cost optimality hypothesis, firstly formulated by Wright et al.
(2003) and further developed by Prentice et al. (2014), predicts that χ tends to increase with increasing tem-
perature (Temp) and to decrease with increasing atmospheric vapor pressure deficit (D) and elevation (Z).
Such dependencies have been quantitatively derived by Wang et al. (2017) and are given by

ln
χo

1� χo

� �
¼ 0:0545 Temp � 25

� �� 0:25 lnD� 0:0815Z þ C: (9)

The overlined characters (Temp andD) are used to denote growing season average daytime values, and C is a
coefficient fixed to 1.189 for C3 plants according to Wang et al. (2017). Given that equation (9) predicts a long-
term optimal value (χo), which might mask short-term responses, here we further hypothesize that χ decays
over the course of a day with increasing D (Mortazavi et al., 2005; Tan et al., 2017). For example, a simplified
leaf-level optimality approach (for Rubisco-limited photosynthesis of C3 plants) predicts short-term variations

in χ≈1�
ffiffiffiffiffiffiffiffiffi
D
Ca
aλ

q
, provided the marginal water use efficiency λ varies with atmospheric CO2 over long time-

scales (Katul et al., 2010). Because of these findings, a diel sensitivity factor 1= 1þ β
ffiffiffiffi
D

p� �� �
is used to describe

diurnal variations of χ that are consistent with several leaf-level optimization (equation (2)). Note that β (or λ)
is the intrinsic WUE and measures “the carbon cost of water,” which can be found elsewhere as b1 or ξ (Lin
et al., 2015; Medlyn et al., 2011; Prentice et al., 2014). Here β is used to denote a diel-response parameter
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that is optimized over a 5-day window. Expectations are that a constant χ is achieved when β or λ are small
(no diel variations). On the contrary, a more accentuated decline of χ would follow during soil moisture deficit
to support an increasing photosynthetic capacity (Wright et al., 2003) and eventually the expected increased
WUE (Palmroth et al., 2013; Villalobos et al., 2012). This agrees with evidence that short-term χ derived from
leaf gas-exchange observations tend to decline when gs limits Ph while being relatively constant under
optimum conditions (see Figure S1 in the supporting information; see also Figure 4 in Katul et al., 2009).
Because β (or λ) is unknown, this parameter is retained in the parameter optimization to be discussed.

When stomata operate optimally, it is reasonable in a plant optimization scheme to infer amaximum gc (gmax)
when the daily maximum EC-derived Ph (Phmax) is observed—normally over the mornings at low D.
According to Jarvis (1976), we interpret the dynamic change of gc by scaling the derived gmax through a series
of multiplicative functions defining stomata responses to environmental conditions (i.e., photosynthetically
active radiation, Q; air temperature, Temp; and vapor pressure deficit, D):

gc ¼ g Qð Þf Temp
� �

f Dð Þ;where (10)

g Qð Þ ¼ gmaxQ
Qþ a1

; (11)

f Temp
� � ¼ b1 Temp � Tmin

� �
Tmax � Temp
� �b2 ; (12)

with b1 and b2 derived as

b1 ¼ 1

a2 � Tminð Þ Tmax � a2ð Þb2 ; (12:1)

b2 ¼ Tmax � a2ð Þ
Tmax � Tminð Þ ; (12:2)

Table 1
List of Variables

Symbol Units Description

Ph mmol · m�2 · s�1 Gross photosynthetic flux
T mmol · m�2 · s�1 Plant transpiration rate
ET mmol · m�2 · s�2 Evapotranspiration rate
Es mmol · m�2 · s�3 Evaporation rate from the soil and/or other wet surfaces
χ ~ Internal to ambient CO2 concentration to be numerically solved
χo ~ Long-term effective χ derived from its environmental dependences
Rn W/m2 Net Radiation
G W/m2 Ground heat flux
LE W/m2 Latent heat flux
H W/m2 Sensible heat flux
WUE mmol/mmol Water use efficiency
gx

z m/s Conductance. The subscript X can stand for bulk surface conductance (gbulk),
canopy stomatal conductance (gc), or aerodynamic conductance (ga). The latter
calculated as the sum of the resistances to momentum transfer (gaM) and to heat
transfer (gb). The subscript z expresses whether the conductance term is
expressed for heat (H), CO2 (no symbol is used), or water vapor (W). Note
that g can be expressed in units of mmol CO2 · m

�2 · s�1 or
mmol H2O · m�2 · s�1 (gW) by considering changes in ρ and the respective
diffusion coefficients

D kPa Vapor pressure deficit
cp J · kg�1 · K�1 Specific heat capacity
ρa mol/m3 Molar air density
β kPa�0.5 Diel-response parameter denoting the carbon cost of water to be numerically solved
a1, a2, a3 ~ Fitting parameters
Q mmol · m�2 · s�1 Photosynthetic active radiation
Temp K Air temperature
Z km Altitude

Note. The overlined character in D and Temp can be is used to denote growing season average daytime values.
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f Dð Þ ¼ exp �a3Dð Þ; (13)

the parameter a2 denotes the optimum temperature and Tmax and Tmin the highest and lowest temperatures
set to 0 and 40 °C, respectively. Other forms to equation (13) can be used that are anchored to outcomes of
stomatal optimization (e.g., see equation (8) in Katul et al., 2010, and others—Dewar et al., 2018). Here D
stands for leaf-to-air vapor pressure deficit and is calculated by accounting for plant temperature, a better
driving factor of stomata conductance (Perez-Priego, Lopez-Ballesteros, et al., 2015). Because plant tempera-
ture is rarely measured, we define a bulk surface temperature as Tbulk = Hra/cpρ + Temp as a proxy for plant
temperature where H is the sensible heat flux (H) measured by the EC system, cpρ is the volumetric heat capa-
city, and ra is the bulk aerodynamic boundary layer resistance. Changes in heat storage are disregarded. To
account for the influence of the canopy boundary layer, gc in equation (8) is replaced by the “bulk” surface
conductance (gbulk), which is calculated as

1
gbulk

¼ 1
1
gc
þ 1

ga

; (14)

where ga (or its inverse resistance, ra) is characterized in terms of aerodynamic resistance to momentum
transfer (gaM) and to heat transfer (gbH) and computed according to Monteith and Unsworth (2013) as 1

ga
¼ 1

gaM

þ 1
gbH

¼ u
u2�
þ 6:2u�0:67

� (equations (17.5) and (17.8)). Based on molecular diffusivities, gc to water vapor (gwc ) is

approximated as gwc ≈ 1.6gc, being 1.6 the diffusivity factor between CO2 and water vapor. Similarly, the dif-
fusivities causes between gb for heat (gbH), CO2 (gb), and water vapor (gwb ) were calculated according to Hicks

et al. (1987). Therefore, rb = N Sc
Pr

� �n
rbH and rwb ¼ N Scw

Pr

� �n
rbH, where N = 1 for amphistomatous leaves or 2 for

hypostomatous leaves, Sc is the molecular Schmidt number for CO2 (≈ 1.05), and Scw is the molecular
Schmidt number for water vapor (Scw ≈ 1.6 Sc), Pr is the molecular Prandtl number for air (≈0.71), and n is
an empirical turbulence parameter (≈ 0.66). Here, it is assumed that mesophyll conductance is infinite and
is therefore neglected. This assumption may be questionable as a number of studies have already suggested
that mesophyll conductance can be restrictive during plant stress conditions—whether be they soil moisture
or salt stress related (Dewar et al., 2018; Volpe et al., 2011). If mesophyll conductance limits photosynthesis,
then β, a1, a2, and a3 must be treated as effective as they will effectively absorb the mesophyll limitations dur-
ing plant stress conditions. Hence, it will be difficult to provide a causal explanation to the increases in opti-
mized β during plant stress conditions in relation to soil moisture only. However, this difficulty in parameter
interpretation does not appreciably impact the sought-after goal of separating ET into its two constituent
terms. Notwithstanding this parameter interpretation issue, gc can be used to derive transpiration as follows:

T ¼ ρag
w
bulk

D
Pa

; (15)

where Pa is the atmospheric pressure. Finally, Es is derived from EC-measured ET and modeled T as shown in
equation (7) in Figure 1.

2.2. Model Optimization

The four model parameters (β, a1, a2, and a3 in equations (2)–(5)) were estimated using a multiconstraint
Markov chain Monte Carlo as implemented in the Delayed Rejection Adaptive Metropolis algorithm of the
A Flexible Modelling Environment for Inverse Modelling, Sensitivity, Identifiability and Monte Carlo Analysis
package (R Development Core Team, 2010). As a novelty, the objective function is to find those numerical
solutions that minimize not only the mismatch between observed and modeled Ph but also the unit cost
of transpiration by introducing a conditional factor demand (Φ), which invokes the optimality hypothesis.
Accordingly, the objective function is defined as

OF ¼ ∑
Obsi �Modi

ε

� �2

=nþ Φ; (16)

where the first term denotes the mean sum of the square between observed (inferred) and modeled Ph,
which are normalized by the flux measurement errors (Ɛ, calculated as the variance of the covariance accord-
ing to Finkelstein & Sims, 2001), and the second term the mean Φ defined as the integrated cost of
transpiration (i.e., ∫T/∫Ph) over a time period (5 days) normalized by a factor describing an optimal WUEo.
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The optimal WUEo was calculated as WUEo ¼ Ca 1� χoð ÞPa= 1:6D
� �

, which results from combining equa-
tions (8) and (15). Ca and Pa are fixed at 390 ppm and 96 kPa, respectively. In the optimization routine, we
assume uninformative uniform priors of each parameter. The lower and upper bounds of the a1, a2, a3,
and β parameters were restricted to 0, 0, 10, and 0 and 400, 0.4, 30, and 1, respectively. The number of itera-
tions was set to 20,000, and the first half of the chains was discarded. We updated the proposed distribution
every 500 iterations. The Markov chain Monte Carlo calibration was performed on a daily basis using a 5-day
moving window. This time period is consistent with the one used for daytime Net ecosystem CO2 exchange
(NEE) partitioningmethods and is typically used to guarantee on one hand a good number of half-hourly data
for the model fitting and on the other hand a window relatively small to catch the response of T/ET partition-
ing at short timescale (i.e., rain events or sudden increase of VPD that can regulate transpiration). For the opti-
mization, only high-quality data were used: (i) quality flags of the CO2 fluxes = 0 according to Mauder and
Foken (2004); (ii) wind friction velocity threshold filtering criterion according to Perez-Priego et al. (2017);
and (iii) no precipitation. To monitor the convergence of the Markov chain simulation toward the posterior
distributions of parameters, we started three Markov chains from three random parameter sets generated
by Latin hypercube sampling from the prior and checked that the Gelman diagnostic is smaller than 1.1
(Gelman & Shirley, 2011). While parameters were estimated from the best parameter fit, we sampled 100
parameter sets from the posterior distribution to propagate model uncertainties.

3. Data
3.1. Site Description

The model was tested using data from an experimental site located in a Mediterranean tree-grass savannah
in Spain (39°56025″N, 5°46029″W; Majadas de Tietar, Caceres). The site is characterized by a mean annual tem-
perature of 16 °C, mean annual precipitation of approx. 650mm, fallingmostly fromNovember until May with
prolonged dry summers. The vegetation is composed of a low-density tree cover (mostly Quercus ilex (L.),
approx. 20 trees/ha, and mean diameter at breast height of 46.86 cm) and dominated by a herbaceous stra-
tum during the growing season (Perez-Priego et al., 2017). The fractional cover of the herbaceous stratum
with the three main functional plant forms (grasses, forbs, and legumes) varies seasonally according to their
phenological status (Perez-Priego, Guan, et al., 2015), with important interannual variations related to the
onset of the dry period. Overall, herbaceous stratum peaks around end of March with mean plant area index
values of up to 2 m2/m2, achieves senescence by the end of May, and greens up by the fall after a long dry
summer (Migliavacca et al., 2017). The soil is classified as an Abruptic Luvisol (IUSS Working GroupWRB, 2015)
and originates from Pliocene-Miocene alluvial deposits. The upper limit of the clay horizon is found at a depth
between 30 and 100 cm. The texture in the upper horizons is sandy (80% sand, 9% clay, and 11% silt).

3.2. Instrumentation
3.2.1. EC, Lower Boundary-Controlled Lysimeters, and Ancillary Data
An EC system was operated for 3 years (2015–2017) at 15-m height (more detailed information can be found
in Perez-Priego et al., 2017). Briefly, the set of instruments consisted of a sonic anemometer (Gill R3–50; Gill
Instruments Limited, Lymington, UK) and an enclosed path infrared gas analyzer (LI-7200, LI-COR
Biosciences Inc., Lincoln, NE, USA). A net radiometer was placed at the top of the tower (CNR4,
Kipp&Zonen, Delft, Netherlands). EC raw data—including sonic temperature (K), the three-dimensional wind
velocities (u, v, and w in m/s), and dry CO2/H2O mixing ratios—were collected at 20 Hz and processed with
EddyPro version 5.2.0 (Fratini & Mauder, 2014). A detailed description of data processing, error determination,
and quality check can be found in Perez-Priego et al. (2017). The EC tower was equipped with a hygrotherm-
ometer (Thies Clima, Göttingen, Germany) in a ventilated shelter to measure air temperature and humidity.
Additionally, the incident photosynthetically active radiation (Q) was measured with a quantum sensor
(PQS1 PAR Quantum Sensor, Kipp&Zonen, Delft, Netherlands). Net ecosystem CO2 fluxes were gap-filled
(Reichstein et al., 2005) and partitioned into gross photosynthesis (Ph) and ecosystem respiration using both
nighttime (Reichstein et al., 2005) and daytime (Lasslop et al., 2010) partitioning implemented in the
REddyProc 0.7-1 R package (Wutzler et al., 2018). For simplicity, we will refer nighttime and daytime partition-
ing methods as MR and GL, respectively. The normalized difference vegetation index (NDVI) was used as a
descriptor of plant leaf development and extracted from the MODIS 16-day land surface reflectance data
(MOD13Q1, at 3 × 3 pixel of 250-m spatial resolution centered at the EC tower).

10.1029/2018JG004637Journal of Geophysical Research: Biogeosciences

PEREZ-PRIEGO ET AL. 7



Three PE-HD container weighable lysimeter stations (8-m2 area and 2.5-m length) were installed under-
ground at the different sites (open space covering the grass) spread out over the fetch of the EC tower.
Each station contained two weighable lysimeters of the lower temperature- and tension-controlled (LBC)
type. An undisturbed soil monolith of around 2,700 kg (under dry conditions) was packed into each lysimeter
vessel using an original lysimeter soil retriever technique (Reth et al., 2007). This novel lysimeter type includes
a lower-boundary-controlled system that facilitates control of both soil matrix tension and temperature to
mirror the actual values in the surrounding soil. This provides accurate estimates of ET while minimizing soil
disturbances. Briefly, the tension-controlled system consisted of 10 porous ceramic bars that connect the
capillary system of the soil at the bottom of the lysimeter vessel to a pressure-regulated, airtight water tank.
The air pressure inside the tank is regulated according to the actual soil matrix tension outside the station
measured by a reference tensiometer (Tensio160, VKWA 100 Tipping counter, Umwelt-Geräte-Technik
GmbH, Müncheberg, Germany). A heat exchanger system maintained the temperature at the bottom layer
of the soil column equal to that of the surrounding soil. Each lysimeter vessel was made of a stainless steel
cylinder with a cross-sectional area of 1.0 m2 and 1.2-m depth and wrapped with a temperature-insulated
sheet to keep natural temperature and tension gradients along the soil monolith profile. Soil moisture and
temperature (UMP-1, Umwelt-Geräte-TechnikGmbH, Müncheberg, Germany) at 10, 30, 75, and 100 cm were
measured inside each lysimeter.

A flat concrete surface at each station provides a robust basis for the weighing system. Every lysimeter vessel
sits on a load triangle with three precision shear-stress cells (Model 3510, Stainless Steel Shear Beam Load
Cell, VPG Transducers, Heilbronn, Germany) mounted on a stainless steel supporter. The load cells were pre-
viously calibrated with known mass and were able to sense variations of up to 10 g/m2 ground surface. A tip-
ping counter measured water seepage (VKWA100 Tipping counter, Umwelt-Geräte-Technik GmbH,
Müncheberg, Germany). The lysimeter’s weight was recorded every 1 min. Once correcting for changes in
mass via the LBC system and excluding periods of water seepage and precipitation, evaporative loss
(expressed as positive values), or mass gain by dew fall (expressed as negative values) were calculated then
as the differences in mass from the previous time interval.

Calculated water fluxes were processed using a comprehensive data quality and assurance procedure. Briefly,

fluxes were calculated using 15-min time intervals (Fi). A moving function (|Fi�median(Fi¼15
i¼1 )|/MAD) contain-

ing the median absolute deviation (MAD) of Fi was performed over 15 min to detect anomalies. Those values
exceeding 1.5 were removed and excluded from calculations. For comparison with the EC data, calculated Fi
within every half-hour were averaged and converted to water vapor molar fluxes (mmol H2O · m�2 · s�1). A
second filter criterion used the MAD of calculated fluxes from the six lysimeters (FLys). Accordingly, data for
which |FLys � median(FLys)|/MAD > 2 were also flagged as an outlier. Finally, the ensemble of half-hourly
unflagged FLys values was used to calculate the mean and the standard deviation, which were considered
as an integrative quantity of the understory ET and its associated variability.

3.3. Model Evaluation and Benchmarking

For evaluation, Es estimates derived from the model were compared against independent lysimeter observa-
tions during dry periods, when grass is already senescence and the observed ET by the lysimeter defines Es. It
is worth mentioning that the mismatches between EC-derived ET and independent estimates at this site are
below an acceptable threshold (20%) during certain environmental conditions (i.e., turbulent mixing deficien-
cies and/or stable atmospheric stratification and high relative humidity) and that the Bowen ratio method
(Twine et al., 2000) may be applied to the EC data to correct for the lack of energy balance closure (92%;
Perez-Priego et al., 2017). We rejected corrections that lead to implausible values (i.e., corrected ET> 2 times
the observed ET). For those conditions and when quality flags of the ET fluxes = 0, the observed ET was con-
sidered as a good quality.

In addition, the optimized WUE from the model was used as an input to the FVS method schemes to explore
its validity (Scanlon & Kustas, 2012; Scanlon & Sahu, 2008). Given that FVS has recently emerged as one of the
promising water flux partitioning methods (Skaggs et al., 2018), the degree of accuracy of the FVS method
associated with different WUE parameterization schemes is further evaluated here.

Briefly, the FVS method relies on the assumption that stomatal and nonstomatal turbulent fluxes conform to
flux-variance similarity. Under this theoretical premise, an analytical approach is built such that stomatal and
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nonstomatal turbulent exchange results in perfect correlations between high-frequency measurements of
water vapor and CO2 concentrations (i.e., exchange associated with Ph and T results in a correlation
coefficient of �1 between the concentrations, while exchange associated with Es and respiration results in
a correlation coefficient of +1 between the concentrations). This correlation-based flux partitioning
approach only requires high-frequency time series of CO2 and water vapor concentrations derived from
conventional EC instrumentation and prior information of plant WUE. More complete details about this
method can be found in a number of prior publications (Palatella et al., 2014; Scanlon & Kustas, 2012;
Scanlon & Sahu, 2008; Skaggs et al., 2018).

Accordingly, 20-Hz EC data series despiked and corrected for CO2 and water vapor lags were used to com-
pute the required inputs including standard deviation of the water vapor and CO2 fluctuations, as well as
the correlation between water vapor and CO2 and their respective fluxes. The improved numerical solution
of FVS suggested by Palatella et al. (2014) and implemented in a Matlab routine was used to derive both T
and Es flux components. The FVS partitioning procedure has been recently implemented in an open source
Python module (Skaggs et al., 2018).

Particularly, three different WUE parameterization schemes were compared:

1. FVS optm: WUE estimates were directly derived from the optimality model.
2. FVS seasonal: Here we fixed the β parameter as 0 (equation (2)) and assume χ = χ0. Accordingly, χ is only

assumed to vary over the season.
3. FVS fixed: here we fixed χ as a constant value. This approach is based on the assumption that χ may be

relatively constant when stomata operate optimally (Ball & Berry, 1982; Wong et al., 1979). Former studies
fixed a relatively stable value of 0.8 for C3 plants (Norman, 1982). Althoughmore recent studies have shown
this ratio to fall between ±35% (Hetherington & Woodward, 2003), here we used a fixed value of 0.8.

4. Results
4.1. Model Performance and Physiological Patterns

Figure 2 illustrates the diel patterns of modeled and inferred Ph during a week of two representative (a) grow-
ing and (b) dry periods in 2017. As a characteristic of Mediterranean ecosystems, pronounced decreases of Ph
over the afternoons were well reproduced, particularly over the dry period when stomata reduce the gas

Figure 2. Diurnal variations of gross photosynthesis (Ph) inferred from the eddy covariance (EC) CO2 fluxes using the
approaches described in Reichstein et al. (2005; MR method, circles) and Lasslop et al. (2010; GL method, black solid line)
modeled Ph (red solid line) in two representative periods: (a) growing (top) and (b) dry (bottom) seasons.
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exchange in response to high D, which led to more accentuated asym-
metric diel patterns as compared to the wet season. The model perfor-
mance was generally acceptable with good agreement between
modeled Ph and inferred Ph by MR partitioning algorithm (slope = 1.1,
r2 = 0.73, MAE = 1.64 μmol CO2 · m

�2 · s�1; Figure S2a) as well as by the
GL method during the 3-year study (slope = 1.1, r2 = 0.77,
MAE = 1.57 μmol CO2 · m

�2 · s�1; Figure S2b). TheΦ term, the transpiration
cost term in the multiconstraint cost function (equation (16)), followed a
dynamic seasonal trend peaking throughout the dry summer with the low-
est values over the winter. Φ ranged between 0% and 35% of the root
mean square error (see Figure S3). Residuals of the models were not corre-
lated with Φ. The Gelman diagnostic values were lower than 1.1 in
most cases, which indicates that the convergence of multiple Markov
chain Monte Carlo chains runs independently of the initial parameters.
Generally, the model was sensitive to changes in the climatic forcing (i.e.,

light, stability conditions, temperature, and humidity) as shown by the variability among the days presented
in both periods. The Ph inferred from EC data by either MR or GL partitioning methods should not be consid-
ered as an observation but an estimate. Given that MR partitioning method entails fewer modeling assump-
tions than GL partitioning (Wutzler et al., 2018), we considered EC Ph estimates by MR method as the
reference to constraint the optimal model. Note that the MR method relies exclusively on the assumption
that the temperature response function of nighttime net CO2 fluxes can be used to predict daytime respira-
tion, while the GL method estimates Ph through a fitting function that accounts for the combined effects of
radiation and VPD as well as the temperature response of respiration (see Lasslop et al., 2010; Reichstein et al.,
2005; Wutzler et al., 2018). The influence of the boundary layer resistance was accounted for in the optimality
model, which explains the observed fluctuations of model estimates (see differences between modeled Ph
and those by GL method; Figure 2b).

The model showed the lowest χ values during the summer drought when the cost of transpiration was high
(β → 1) due to a perceptible soil moisture deficit. Conversely, χ was relatively stable and closer to χo during
the growing-wet season (β → 0; Figure 3). This characteristic trend illustrates the dynamic physiological
responses under optimum and limiting conditions; while χ holds relatively constant over the growing-wet
period, with values around 0.6, a more accentuated χ drawdown was observed during the dry period when
gc was typically reduced to offset the increasing cost of transpiration. A fully detailed illustration of the
dynamic between χ and gc along with its close relation with Ph over a drying down period is provided in
Figure S4.

The observed seasonal trend of χ was associated with soil moisture variations consistent with a large corpus
of data and model results linking plant hydraulics to photosynthesis (Katul et al., 2003). As expected, the
increase in D and soil moisture deficit imposed a χ drawdown, which was partially modulated by the opti-
mized β parameter. According to the optimality, the derived analytical expression (equation (2)) predicted
that χ approached its optimum at low transpiration cost values (i.e., low β values). On the contrary, the
increase in both D and soil moisture deficits imposed a higher transpiration cost that was accompanied by
a reduction of both gc and χ. This pattern can be understood as a synchronized mechanism to support a
higher photosynthetic capacity while reducing transpiration. Accordingly, a higher adjustment of β over
the dry periods always entails an increase in WUE (see Figure S5). While variations in β have been historically
used as evidence against stomata operating optimally (Fites & Teskey, 1988), it is imperative to note here that
β is assumed constant over a 5-day window. This period is much longer than the timescale over which sto-
matal aperture opens and closes. Furthermore, it was shown elsewhere that slow variations in β do not alter
the optimality predictions of gc and χ (Manzoni et al., 2013).

4.2. Model Evaluation

Diel patterns of soil evaporation (Es) estimated from the model followed the lysimeter measurements closely
during the dry period. Overall, a diminishing diurnal pattern of Es with increasing drought is usually observed
over the periods (Figure 4a). Es peaked around midday with values of up to 5 mmol · m�2 · s�1 during the
transition of the wet-to-dry season to the lowest values around 1 mmol · m�2 · s�1 during severe drought

Figure 3. Seasonal variation of the ratio of internal to ambient CO2 ratio
(Ci/Ca and referred to as χ over the text; dark blue line), the β parameter that
relates to the carbon cost of water and soil moisture profile (gray line). The
upper bound of the blue polygon represents the soil moisture at 100-cm
depth, while the lower bound themoisture at the shallow layer (5-cm depth).
Lines represent a 14-day moving average.
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conditions (Figures 4b–4d), when Es flatted out over the course of the day (Figure 4d). The agreement
between Es rate estimates from the model against independent observations (i.e., lysimeter) was
acceptable for the whole dry periods within the 3 years (MAE = 0.49 mmol · m�2 · s�1, slope = 0.95,
r = 0.69; see Figure S6).

Mean diel patterns of plant transpiration both derived from the model and using the FVS optm method fol-
lowed closely each other during the dry period (Figures 5a and 5b). However, a clear discrepancy was found
between transpiration estimates by the optimality model and FVS optm and those by FVS season and FVS
fixed. This suggests that transpiration rates are systematically overestimated whenever neither mid-term
nor short-term kinetic adjustments of χ in response to water stress are accounted for in models. Results
revealed that transpiration is overestimated by 30% when WUE is parameterized with a constant value of
χ = 0.8 (FVS fixed against FVS optm, MAE = 0.48 mmol · m�2 · s�1; Figure 6a). Discrepancies were reduced
when the parameterization scheme allowed χ to vary throughout the season (FVS season against FVS optm,
MAE = 0.29 mmol · m�2 · s�1; Figure 6b).

The seasonal time courses of T and Es were dynamic, peaking around 1–3 mmol · m�2 · s�1 over the growing-
wet season and declining to its lowest values during the dry and winter periods (Figure 7a). Es and T followed
similar seasonal patterns over the transition of the growing season when evaporation was mostly driven by
available energy. However, Es declined earlier than T during the drying-down period with the absence of pre-
cipitation (Figure 7b). Notably, Es was inhibited when the shallow layer dried out while trees withdrew water
from the wet deeper soil. Es estimates followedmuch closer the observations by the lysimeters during the dry
period as compared to the growing season when the differences were attributed to grass transpiration.

4.3. ET Component Fluxes and Drivers

Estimates of Es were strongly associated with changes in soil moisture, which eventually were associated with
an increased vegetation cover, and in particular the herbaceous stratum. Surprisingly, the fractional Es/ET

Figure 4. Diurnal time courses of bothmodeled (red triangles) and observed Es using the lysimeters (black line) throughout
(a) a drying-down period during a summer period in 2015 (from 16 June to 6 August), (b) 17 June, (c) 12 July, and (d) 5
August. Both showed a close agreement over the drying-down period when grass was already senescence, and evapo-
transpiration (ET) rates by lysimeters was mostly driven by soil evaporation.
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increased exponentially with NDVI, suggesting that Es was not suppressed by vegetation, particularly during
the dry period (Figure 8). The observed spread of the data when Es/ET tends to be flat at high NDVI values
could be explained by sporadic precipitation. A sustained pattern of Es/ET values around 0.6–0.8 was
observed while NDVI spanned between 0.4 and 0.7 values (Figure 8a). Although a decrease in soil moisture
of the upper soil was correlated with NDVI (Figure 8b), high Es/ET values were sustained by the wet deeper
soil (1 m). Certainly, only an abrupt decrease of Es/ET around the lowest NDVI values (0.4) was observed
whenever the deeper soil dried out.

Surprisingly, the role of Es was not negligible either during the severe summer drought, which was supported
by lysimeter measurements, or during the growing periods. Indeed, it contributed to a large portion of the
total ET. The highest Es/ET values were found during the growing period (approx. 80%), which suggests that
the available energy to evaporate water from the soil is not a limiting factor regardless of the full

Figure 5. Monthly mean diurnal time courses of transpiration for (a) July 2016 and (b) August 2016 estimated by the opti-
mal model (black circles), flux variance similarity (FVS)-optm (black squares), FVS-fixed (white squares), and FVS-season
(white circles).

Figure 6. Comparison between transpiration estimates between flux variance similarity (FVS)-optm and (a) Fixed-FVS and
(b) Season-FVS. Results from the statistical analysis are included.
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development of the grass layer during this period (Figure 9). A fundamen-
tal aspect to remark here is that the Es term should not be considered as
solely soil evaporation but also direct evaporation from intercepted water
by rain and/or dewfall, particularly during the wet period.

5. Discussion

A novel framework for the partitioning of net EC water fluxes into their
constitutive terms T and Es was developed and independently tested.
The description of short-term χ variations, based on leaf-level optimality
arguments up-scaled to canopy, was key to derive the optimal stomatal
behavior in accordance with the inferred Ph patterns from EC. The combi-
nation of theory and observations provided the foundation for a
data-model flux partitioning strategy that can be applied to the same spa-
tiotemporal scales sampled by the EC footprint. The notion that stomata
operate optimally to minimize water loss has been largely considered as
the basis of the coupled plant carbon-water economies (Katul et al.,
2000, 2010). It was even suggested to reflect a general evolutionary prop-
erty attributed to all plant forms (Prentice et al., 2014). The timescales on
which this theory is applicable is an important matter of debate (Buckley
et al., 2017; Dewar et al., 2018). However, χ is expected to vary over the
course of a day in response to diurnal D variations consistent with numer-

ous leaf-gas exchange data and models, including optimality theories. The β parameter defining the “the car-
bon cost of water” was numerically solved over a 5-day window under the premise that a minimum water
cost should hold while realistic diurnal gc patterns were modeled based on well-defined environmental
dependencies (i.e., Q, D, and Temp). It is important to note that the optimal approximation for gc was obtained
without the need to disregard the influence of the canopy boundary layer. At the seasonal scale, χ variations
were associated with soil moisture (Figure 3). This suggests that soil water availability is necessary in dynamic
ecosystem models to constrain the temporal and spatial variability of χ and ultimately stomatal regulation
and transpiration fluxes.

The proposed optimization scheme successfully interpreted the trade-off between χ and gc according to the
increased carbon cost of maintaining a given transpiration rate during drought conditions (Manzoni et al.,
2013). Our findings showed that χ responded to soil dryness, when a reduction in gc brought about a

Figure 7. Seasonal variations of (a) modeled stand transpiration (T, including
grass and tree contributions, green area) and derived evaporation (Es, blue
area) and independent evapotranspiration (ET) observations with lysimeters
(gray line), and (b) air temperature (gray color) and precipitation (dark blue)
data represent daytime mean values. Note that the shaded areas represent
the model uncertainties.

Figure 8. The relation between satellite-based normalized difference vegetation index (NDVI) and (a) Es/ET and (b) soil
moisture (SM) at 5- and 100-cm depth.
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decrease in χ during the summer drought (Figure S4) and subsequently an
increased WUE (Figure S5). Though reducing the water cost is regarded
here as the main benefit of an optimal stomata behavior, this pattern
might reflect other associated costs (Wright et al., 2003). For instance, a
complementary relationship between WUE and nitrogen-use efficiency
has been well described through an optimization model by Palmroth
et al. (2013). The fact that a higher WUE during water stress causes an
increased foliar nitrogen (N) demand agrees with observations of N con-
tent in leaves in the Holm Oak (R. Cascon, personal communication,
November 2017) and in the herbaceous layer (Migliavacca et al., 2017;
Perez-Priego, Guan, et al., 2015). A higher allocation of N in photosynthetic
proteins (i.e., increase in maximum carboxylation capacity, Vcmax) would
eventually reduce the high cost of transpiration during the dry period.
This also agrees with Wright et al. (2003), who suggested that the optimal-

ity theory is incomplete when the unit cost associated with photosynthesis is not considered. Presumably, a
higher N investment in active photosynthetic proteins during the summer drought would support the
evidence that a higher Vcmax per unit of leaf N area is found with increasing aridity (Prentice et al., 2011,
2014). Studies detailing changes in plant hydraulic properties associated with nitrogen availability and its
interplay with WUE are required and make exciting future inquiry. As shown in Figures 5 and 6, improved
partitioning FVS results can be achieved by accounting for mid-term and short-term biochemical kinetics
of χ, which along with D define the observed seasonal variability of WUE.

The evaluation against independent data and methodology provides confidence that the proposed
framework provides a practical approach for partitioning ET into its components from EC data (Figure S6).
The proposed approach facilitates a broader exploration of how to approximate Es/ET based on leaf area
while accommodating the hydraulic properties of the soil. The dynamic of changes in Es estimates agreed
also with the empirical observations by Gardner (1959), who described the daily Es decrease over the
drying-down phase as a function of the square root of inverse time (r2 = 0.99; Figure 10b). It is shown that
the partitioning method provides a means for the retrieval not only of plant hydraulic properties but also
for soil parameterization and model testing. For instance, Figure 10a illustrates the results of the alternative
solution proposed by Brutsaert (2014), who proposed an exponential decay function of the form
Es = E0 exp (�t/k)) to parameterize soil physical characteristics. Note that E0 represents the reference Es at time
0 (t = 0) and k the decay (the higher the k, the slower is the decay of Es). The optimized parameters E0 and k of

Figure 9. Seasonal variation of Es/ET (%, dark blue) and soil moisture (%vol.,
light blue). The upper bound of the polygon represents the soil moisture at
100-cm depth, while the lowest bound the moisture at the shallow 5-cm
depth.

Figure 10. Daily patterns of (a) mean and (b) cumulative daily modeled Es throughout the drying-down period presented
in Figure 4. Data include 50 days starting from 17 June 2015. While an exponential decay function as proposed by Brutsaert
(2014) was fitted to daily Es (a), the widely used square root of inverse time was fitted to the cumulative Es (b).
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the empirical model were within the range of values reported for sandy-loam soil (Brutsaert, 2014) and along
with FVS grant confidence to the partitioning method. By inferring WUE from optimality arguments, we have
demonstrated the effectiveness of this approach when supplementing the FVSmethod, which is subjected to
a number of differing assumptions and requirements including WUE parameterization. Comparison of FVS
showed that the partitioned fluxes can be biased by up to 30% in average depending upon the WUE
parameterization applied.

Our findings revealed that regardless of vegetation cover, Es was larger than might be expected during both
the growing-wet and dry conditions. While adequate soil moisture conditions allow high evaporative rates, Es
was largely sensitive to changes in climatic conditions (i.e., available energy and degree of aerodynamic cou-
pling). This explains why Es exhibited a highly dynamic behavior over the growing-to-dry transition period
when the occurrence of precipitation was typically stochastic and the environmental conditions variable.
During this period, rapid changes in Es can be explained by a low soil hydraulic resistance of the top sandy
layer, which favors evaporation in response to environmental changes (Figure 9). The large contribution of
Es to the total ET (approx. 70%) during the wet period agrees with Perez-Priego et al. (2017), who observed
with lysimeters substantial moisture in the near-ground and plant surfaces that support the large contribu-
tion of the understory ET at our site. This pattern also agrees with Dubbert et al. (2014), who found with iso-
topes a significant contribution of Es during the spring periods in a similar Mediterranean Savanna. This large
contribution of Es tends to agree with a compilation of global climate model-based estimates (Schlesinger &
Jasechko, 2014). Perez-Priego et al. (2017) highlighted the nonnegligible role of nighttime dewfall, which
should be regarded as an important source of Es during the wet season. Conversely, a more sustained
dynamic of Es over the dry season is caused by the high hydraulic resistance of the clay layer in the deeper
part of the soil. This decline was more accentuated than T, suggesting that the rooting system of the trees
tap water from the deeper wet soil, which allowed them to sustain a relatively higher evaporation rates. As
observed by lysimeter measurements, considerable Es rates were measured when the shallow soil dried, indi-
cating that the soil evaporative front should have held below the sandy layer.

6. Conclusions

Based on optimality arguments, we provide evidences that the dependency of χ on D is largely modulated by
seasonal drought processes. Consequently, optimal stomatal models that assume β (or λ) as a functional attri-
bute of plant forms might require adaptation to explicitly account for the temporal variability. This raises con-
cerns when vegetation models use water stress factors to capture the seasonal variability but still assume β to
be constant. Variations in β were shown not to alter the optimality predictions of gc and χ when β is retained
as part of the parameter optimization problem. The premise is that an optimal solution can be found for an
objective function that minimizes the carbon cost of transpiration. We have demonstrated that adjustment in
β along dry conditions can be numerically solved and provide a parsimonious representation of optimal sto-
matal behavior. When combined with EC data, this representation can elucidate plant and soil hydraulic
properties. A realistic representation of individual Es and T components is offered and shown to apply to
the same spatiotemporal scales commensurate with EC-measured ET fluxes. The method developed here
provides a practical and physiologically based water-flux partitioning framework and can be of general use
across contrasting flux sites, biomes, and plant functional types. Clearly, the approach is most suitable to
complement long-term flux measurements such as FLUXNET. Another pragmatic benefit of this approach
is the indirect detection of mechanisms leading plants to functionally adapt and behave differently under
contrasting conditions. Further research is needed to investigate the trade-off between water and nutrient
in photosynthesis (e.g., using ecosystem-scale manipulative experiments; e.g., El-Madany et al., 2018), which
is a topic best kept for the near future.

The approach proposed here could be most effective when supplementing other approaches such as FVS.
Agreement among methods with differing assumptions and requirements lends confidence to the ET parti-
tioning, and differences among methods can flag cases where further inquiry is required. Finally, the nonne-
gligible role of Es over the whole range of conditions indicates that ET measurements by EC should be used
with caution if they are assumed to be equivalent to T, particularly in (semi) arid sites. Soil moisture was the
main driving factor of the seasonality of Es/ET. In addition to soil moisture, other sources of Es such as free
evaporation of dew should not be overlooked.
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