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ABSTRACT

The exchange of scalars between the biosphere and the atmosphere has direct bearing on a large number of problems
such as climate change, air and water quality, agricultural management and food security, landscape ecology, and
decision making for environmental compliances and policy formulation. Near the canopy-atmosphere interface,
turbulent fluctuations in scalar concentrations exhibit complex dynamic behaviour that shows some parallels with
the transporting turbulent velocity field. However, the statistical properties of scalar turbulence within and just
above the canopy can also be partly decoupled from those of the transporting velocity. Here, a unifying framework
is proposed that accounts for vertical variations in scalar sources and sinks within the canopy volume, the lack of
equilibrium between production and dissipation terms in second-order scalar budget equations, the rapid changes
in turbulent kinetic energy dissipation rate inside canopies, the relative importance of ejections and sweeps, the role
of thermal stratification, and the ‘near-field” effects of the scalar source on gradient-diffusion theories. Ways in which
these same phenomena modify the scalar spectra and scalar-vertical velocity co-spectra within the inertial subrange
above the canopy and at scales finer than the wake generation region within the canopy are presented. Finally, the
origin of organized eddy structure connected with surface renewal that leads to scalar ramps is briefly discussed.
The work draws upon a large number of flume, wind tunnel, and field experiments, and offers novel theoretical
scaling arguments as to how coherency in the flow field impacts scalar spectra and scalar-velocity co-spectra at scales
smaller than the shear production scales.

6.1 Introduction

Quantifying risks to and benefits from the goods and
services offered by the biosphere is moving the study of
canopy turbulence from the margins of micrometeorol-
ogy and agricultural sciences to being a major research
thrust in earth system sciences. Scalar transport within
canopies remains a vexing research problem confronting
basic fluid mechanics, hydrological, atmospheric, ecolog-

ical, climate, and environmental sciences. The outcomes
from scalar transport studies have direct bearing on a
large number of disciplines, such as climate change, air
and water quality, agricultural management, landscape
ecology, and decision making for environmental com-
pliances and policy formulation, to name a few. From
the climate-change perspective, concerns about increased
anthropogenic CO, emissions and the potential role of
the biosphere as a carbon sink (Malhi, 2002) resulted in a
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proliferation of long-term eddy-covariance flux measure-
ments of carbon dioxide, heat and water vapour across
different biomes and climates (Baldocchi et al., 2001).
Within the context of this initiative, how to connect bio-
logical sources and sinks to monitored turbulent fluxes
in the atmosphere remains a problem that can only be
approached through fundamental understanding of scalar
transport within canopies (Belcher et al., 2012).

However, other equally pressing problems also benefit
from studies of scalar transport within the canopy system.
Air quality and linkages between atmospheric chemistry
and turbulent transport is another major research ques-
tion in biosphere-atmosphere exchange. This linkage is
now receiving significant attention given its implications
for food production and ecosystem health (Thomas,
1951). It is now estimated that about 10 to 35% of the
world’s grain production occurs in regions where ozone
pollution can potentially reduce crop yields (Chameides
et al., 1994). Ozone uptake by plants or the production
and transport of ozone precursors (e.g. isoprene) remains
a computationally high-dimensional research problem in
which hundreds of chemical reactions governing ozone
production and destruction occur at time scales com-
parable to that of turbulent transport (Gao and Wesely,
1993; Gao et al., 1993; Wolfe and Thornton, 2011). An
analogous problem is predicting volatilization of several
substances commonly used or produced in agriculture.
For example, the application of pesticides to crops and
soils is a major source of persistent organic pollutants in
the environment. In particular, atmospheric ammonia
is recognized as a pollutant for managed ecosystems as
its deposition leads to soil acidification and ecosystem
eutrophication (Sutton et al, 1993). Both measurement
programmes and modelling studies are proposed to
track the transport, transformation and deposition of
pollutants to water bodies and other terrestrial surfaces.
Another area where scalar turbulence is receiving atten-
tion is in modelling the micro-climate within large-scale
protected agricultural environments (e.g. screen-houses).
Water vapour, carbon dioxide, and sensible heat released
or taken up by vegetation within such protected environ-
ments can substantially alter their immediate turbulent
micro-environment, which in turn, affects these fluxes
(Manzoni et al., 2011; Siqueira et al., 2012).

Moving up from gas molecules to small sized-particles,
the collection of ultra-fine (Lin et al., 2012) and aerosol
sized particles (Petroff et al., 2008) by vegetation is another
topic receiving significant attention in respiratory human
health and in climate research (Pierce and Adams, 2007).
For larger particles such as seeds and pollen grains, long-

distance dispersal (LDD) by wind is intimately linked
to canopy turbulence in ecology (Nathan et al, 2011).
Long-distance dispersal has many implications for gene
flow, pest control, species expansion, recolonization of
disturbed areas, and population dynamics (Nathan et al,
2002). Previous modelling approaches that did not con-
sider the role of turbulence within canopies (especially its
coherency) failed to simulate LDD (Nathan et al., 2002),
which governs the spatial template over which all other
ecological processes (e.g. germination, seedling growth)
occur. There is now a clear recognition that seed and
pollen escape from the canopy is a necessary condition
for LDD and progress in this area must explicitly deal
with canopy turbulence (Williams et al., 2006). When all
these example problems are taken together, it is clear that a
complete theory for scalar transport within canopies must
address questions at spatial and temporal scales ranging
from millimetres to tens of kilometres and from fractions
of seconds to several decades (Katul et al, 2001), well
outside the scope of a single chapter.

A number of recent reviews have already covered the
canonical structure of turbulence, including scalar tur-
bulence (Shraiman and Siggia, 2000; Warhaft, 2000) in
various types of boundary layers (Smits et al., 2011). The
mechanical interaction between wind flow and terrestrial
plants has also been presented and discussed elsewhere (de
Langre, 2008). Moreover, analogies between momentum
transport in aquatic and terrestrial vegetation have been
recently presented (Katul et al., 2011; Nepf, 2012). Turbu-
lent flows near edges and over hills have also been covered
elsewhere (Belcher and Hunt, 1998; Belcher et al., 2012)
and these topics are not repeated here. Hence, the com-
pass of this work is the physics of scalar turbulence inside
canopies, where the canopy is assumed to be extensive
and uniform. Within and immediately above the canopy,
a canopy sublayer (hereafter referred to as the CSL) is
assumed to extend from the ground surface (or forest
floor) up to 2 to 5 times the canopy height k. (Raupach
and Thom, 1981). While the flow statistics are known
to be three-dimensional within the CSL (Finnigan, 2000;
Finnigan etal., 2009), a single vertical axis (z) describes the
flow statistics and canopy properties (e.g. leaf area den-
sity) when a proper planar averaging is employed (Wilson
and Shaw, 1977; Raupach and Shaw, 1982). In such a flow,
the case where a scalar entity is released or absorbed by
the canopy elements is treated. The work here focuses on a
number of past and novel theories describing the statisti-
cal characteristics of scalar concentration fluctuations and
turbulent vertical fluxes, as well as their spectral and co-
spectral homologues.
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6.2 A brief review of scalar turbulence
inside canopies

Since the early 1990s, rapid progress has been made in
determining the canonical form of the velocity statis-
tics within the CSL, as reviewed elsewhere (Raupach
et al., 1996; Finnigan, 2000; Harman and Finnigan, 2007;
Finnigan et al., 2009; Belcher et al., 2012). Unlike its atmo-
spheric surface layer counterpart (Katul ef al., 2011), the
mean velocity profile within the CSL is characterized by an
inflection point near z/h. ~ 1, the second moments are
inhomogeneous with z inside the canopy, velocity skew-
ness values are large (and opposite in sign for horizon-
tal and vertical velocity components), flatness factors for
all the velocity components are far from Gaussian and
suggestive of highly intermittent patterns, and second-
moment budget equations are not in local equilibrium (a
state defined by a balance between the local production
and dissipation rates as discussed in Finnigan, 2000). The
velocity statistics, when ensemble-averaged to approxi-
mate the planar-averaging operation, generally scale with
a single canonical length scale that does not vary with z
(Raupach et al., 1996).

Quadrant analysis and conditional sampling studies
have also revealed that sweeps rather than ejections
dominate momentum fluxes for 0.2 < z/h, < 1.2
(Finnigan, 2000). Moreover, around z/h. = 1, the bulk
flow statistics and instability modes of a plane mixing
layer (hereafter referred to as the mixing layer analogy)
form a more appropriate model for the canopy flow than
those of a boundary layer (Raupach et al, 1996). This
finding suggests that dominant large eddies originate
from an inviscid instability of the inflected mean velocity
profile rather than eddies attached to the canopy top
(Raupach et al, 1996). The aerodynamic drag force
imposed by the foliage is the primary cause of decreasing
(but not suppressing) the mean velocity inside the canopy
when compared to the mean velocity aloft, thereby
introducing an inflected mean velocity profile. This drag
force is also responsible for the so-called ‘spectral short
cut’ mechanism that removes energy from large eddies
and directly diverts it to fine scales (Finnigan, 2000)
where it is rapidly dissipated, bypassing the so-called
classical inertial range eddy-cascade formulated by
Kolmogorov’s (1941) theory. The total turbulent kinetic
energy dissipation rates are generally large inside the
canopy and vary nonmonotonically with z as a result of
the fine-scale shear layers that develop around the foliage
(Poggi et al., 2008; Poggi and Katul, 2009).

Early theoretical work on scalar transport inside
canopies assumed that scalar turbulent fluxes are related to
their mean concentration gradient (known as K-theory)
via a turbulent diffusion coefficient (Raupach and Thom,
1981). Naturally, this theory borrowed from the successes
of Monin and Obukhov similarity theory in the atmo-
spheric surface layer (Monin and Obukhov, 1954). Its
basic form was and remains the ‘work-horse’ for infer-
ring scalar turbulent fluxes from mean scalar concentra-
tion measurements (Harman and Finnigan, 2008; Bash
et al., 2010; Siqueira and Katul, 2010; Wolfe and Thorn-
ton, 2011) and much effort has been spent on estimating
scalar turbulent diffusivities for different scalars and veg-
etation cover (Harman and Finnigan, 2008; Bash et al.,
2010). However, as early as the mid-1970s, it became clear
that assumptions underlying K-theory inside canopies
are questionable (Corrsin, 1974). Research in the 1980s
identified some of the main limitations, which lead to a
number of (interrelated) arguments as to why K-theory
fails inside canopies. The three most common ones are
(Wilson and Shaw, 1977; Raupach, 1989; Finnigan, 2000):
* variable scalar source distribution within the canopy
strongly impacts the apparent diffusivity (near-field
effects);

« lack of local balance between turbulent production and
dissipation (unlike the atmospheric surface layer);

« vertical transport occurs by (organized) eddy motion
whose size is comparable to h., which is larger than the
scale at which the mean concentration gradients change.

It is no surprise that alternatives to K-theory for scalar
transport resulted in: (i) Lagrangian approaches, where
the ‘near-field’ effect of scalar sources was explicitly
accounted for, as popularized by the so-called localized
near field theory (LNF) described elsewhere (Raupach,
1989; Siqueira et al., 2000), and (ii) higher order Eule-
rian closure models (Wilson and Shaw, 1977; Meyers and
Paw U, 1986; 1987), where the imbalance between pro-
duction and dissipation terms was explicitly resolved at
the expense of transferring the gradient-diffusion argu-
ment to higher order mixed moments (Katul and Albert-
son, 1999). Finally, the role of large-scale coherent motion
remained implicit to these two approaches.

6.3 Scope

The compass of this work is to present a unifying frame-
work that bridges all three arguments as to why K-theory
fails inside canopies, and further explore the spectral
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properties of the main terms causing this failure. This
framework accounts for the variations in the scalar sources
and sinks, the lack of equilibrium between production
and dissipation terms of second-order scalar budgets, the
rapid changes in turbulent kinetic energy dissipation rate
inside canopies, and the relative importance of ejections
and sweeps. How these phenomena modify scalar spectra
and scalar-vertical velocity co-spectra within the inertial
subrange of the CSL is presented. The work draws upon
a large number of flume, wind-tunnel, and field experi-
ments, and offers novel theoretical scaling arguments as
to how coherency in the flow impacts scalar spectra and
scalar-velocity co-spectra at scales smaller than the shear
production scales.

6.4 Scalar turbulence within the CSL

Canopy elements such as foliage, branches and trunks act
as sources (or sinks) for scalars that vary appreciably in
space. Examples include CO, uptake or transpiration by
individual leaves via stomatal pores, O3 uptake on wet or
dry leaf surfaces, heat sources or sinks due to radiation
interception and emission by canopy elements, and CO,
respiration from above-ground biomass, among others.
Because these scalar sources and sinks are spatially dis-
tributed over multiple length scales, double-averaging the
constitutive equations becomes necessary (Raupach and
Shaw, 1982). This double averaging follows the conven-
tional Reynolds averaging in addition to averaging applied
over thin horizontal slabs that include a significant num-
ber of canopy elements. Following this double-averaging,
the effects of these canopy elements on the flow and scalar
field must be modelled, often via a drag force or scalar
emission or uptake rate that is often biologically active,
as in the case of water vapour, ozone, and CO,. While
the compass of this work is scalar turbulence, it remains
necessary to establish a back-ground on the bulk flow
field even though the scalar turbulence can be partially
decoupled from the velocity (Shraiman and Siggia, 2000).

As a starting point, the mean longitudinal momentum
balance for a stationary and planar homogeneous flow
at high Reynolds number in the absence of subsidence is

considered and is given as

au ow'u’ i
T —0=— — Hf —
ot 0z L.

(6.1a)

(Raupach and Thom, 1981) where w and u are the ver-
tical and longitudinal velocities, overline represents the
space and time double-averaging operator, % is the mean

longitudinal velocity, w't/ is the turbulent momentum
flux, with primed quantities indicating excursions from
their space-time averaged state, respectively, H; is the
Heaviside step function (H; = 1 when z/h. <1 and zero
otherwise), L. is the so-called adjustment length scale
(Belcher et al., 2003, 2012) given by L, = (Caa; )™}, and
C, is the dimensionless drag coefficient that ranges from
0.1 to 0.3 in terrestrial plants (Katul et al., 2004), a, is
the leaf area density related to the leaf area index (LAI)
via LAl = foh" ar, (z)dz. This equation suggests that three
dynamically relevant length scales must be accounted for:
he, L., and the eddy size or mixing length over which
w'u’ varies within the canopy (1,,). Geometric constraints
on eddy penetration into the canopy require that I,, < h,.
Moreover, in vertically uniform canopies, a, = LAI/h. so
that L./h. = (C4LAI)~'. A mean C4 = 0.2 and a dense
LAI=4m? m~2 resultsin L, ~ h.. Hence, it is common
to represent flow statistics inside canopies as a function
of only h. and the friction velocity near the canopy top
(= u,). This representation appears to ‘collapse’ numer-
ous canopy flow experiments (Raupach, 1996; Belcher,
Harman and Finnigan, 2012), including artificial canopies
composed of rods, strips, crops, and tall forests as shown
by others and as further illustrated in Figure 6.1. These
normalizing variables for velocity and length are conven-
tionally adopted unless otherwise stated.

6.4.1 The Turbulent flux budget

For a stationary and planar-homogeneous flow in the
absence of subsidence and for a high Peclet number, the
double-averaged mean continuity and turbulent flux bud-
gets inside the canopy are given as

9T ow'T

E:O:_ 0z +Hy St ;
(1) —_—
T —— GwT 1% gem
e T DAL Tk S & o
ot 0z p 0z T
(1) o

(6.1b)

(Siqueira and Katul, 2002) where St are heat sources and
sinks (used as a prototypical scalar) distributed within the
canopy volume, w'T’ is the turbulent sensible heat flux,
'y =3T/dz, p’ is a pressure turbulent perturbation, p
is the mean air density, g is the gravitational accelera-
tion, and terms Ty, T5, T3, and T} are the flux produc-
tion, turbulent transport, scalar-pressure interaction (a
de-correlation term), and buoyant production. Here, air
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Figure 6.1 Profiles of the first and second moments of the flow field within the CSL normalized by h. and u, at the canopy top. These
moments include the normalized mean velocity (U), turbulent stress (#/w’), vertical velocity standard deviation (o,,), and
longitudinal velocity standard deviation (o), collected inside a dense rod canopy in a flume (+), a Loblolly pine plantation (o), and
oak hickory hardwood forest (), a spruce canopy (), a rice canopy (B), a corn canopy (), a Scots pine forest (A), and an Alpine
coniferous forest (V). Despite the 2 orders of magnitude variations in k. and u, across experiments, these two normalizing variables

collapse the flow statistics.

temperature is used as a representative scalar for illustra-
tion, and much of the formulations here can be revised for
other scalars. If a conventional closure model is applied to
term T3, given as

! w'T 1
T’% =G -
0z T 3

g
=TT 6.2
= (6.2)

(Meyers and Paw U, 1987), then the scalar flux budget can
be re-arranged to yield
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(Cava et al., 2006), where t is a relaxation time scale
defined by the ratio of the turbulent kinetic energy (esx.)
and its mean dissipation rate (¢4.),and C; isa closure con-
stant. This relaxation time scale is a measure of how fast
energy-containing eddies dissipate or lose their coherency
(or decorrelate in time). Under some conditions, this time
scale can also be interpreted as the time scale over which
the turbulence comes into a local equilibrium with the
surrounding mean velocity gradient (Belcher and Hunt,
1998). Naturally, 7 is also a time scale that must be con-
nected to coherent structures, given that these structures
significantly contribute to the amount of kinetic energy
in the flow. The 7 here does not make explicit the precise
geometric and topological features defining these coher-
ent structures, but it should capture some of the controls
their existence exerts on the closure assumptions. Fig-
ure 6.2 shows the variations of ey, &€, and T collected

in a dense rod canopy in a flume. While ey, exhibits
a near-monotonic increase with increasing height within
the CSL (e.g. z/h. € [0, 2]), &4, does not (Figure 6.2). The
nonmonotonic nature of &4, is now supported by a num-
ber of flume and wind tunnel experiments (Figure 6.2).
This nonmonotonic behaviour for &4, necessarily leads to
nonmonotonic variations in the t profile within the CSL,
which cannot be readily linked to generic time scales such
as the integral time scale of the vertical velocity (I,,) or an
equilibrium time scale (~k,z/u,) characterizing bound-
ary layers (see Figure 6.2).

Equation (6.3) suggests that any failure of the so-
called ‘gradient-diffusion’ theory (i.e. when w'T =
— (rw’w/ / Cl) I'r, where the turbulent diffusivity is
(zw'w'/C})) can now be traced back to two terms — the
flux-transport and buoyancy terms. Representations sim-
ilar to this turbulent diffusivity remain popular to date
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Figure 6.2 Measured variations in the normalized turbulent kinetic energy ey, (left panel) and its mean dissipation rate &4, (middle
panel) as a function of normalized height for the flume experiments. The relaxation (o) and integral ([J) time scales are also shown
(right panel). All length and velocity scales are normalized by h, and u,. The g4, profiles in the wind tunnel experiments (shown as
=+, ¢) of Raupach (1988) and the normalized relaxation time scale (dashed line), given by k,(z — d)/u,, are also shown for reference,
where k, = 0.4 is the Von Karman constant. Note the nonmonotonic variations in &4, and t with z, especially for z/h, € [0.2, 2.0].
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within large-scale atmospheric chemistry and transport
models (Wolfe and Thornton, 2011) or in scalar trans-
port over complex terrain (Katul et al., 2006¢; Katul and
Poggi, 2011). The focus here is on the ‘global’ and ‘spec-
tral’ role of these two terms inside canopies. The spectral
analysis is intended to show the scaling laws describing
a range of eddy sizes encoded in t contribute to both —
w'T and T'T’- at least within a minimalist framework
that mirrors the scalar-variance and scalar-flux budgets.

To begin with, two approximations for w'w’T” are first
treated: one is prognostic and is based on conventional
‘local gradient-diffusion’ theory, thereby permitting the
prediction of turbulent scalar fluxes from their local mean
gradients, whereas the other is developed for diagnos-
tic purposes illustrating the close links between w'w’T’
and the statistical properties of the ejection-sweep cycle,
thereby making explicit the complex role of coherent
motion on gradient-diffusion closure.

6.4.2 Gradient-diffusion closure for the
triple moment

For the most elementary gradient-diffusion approxima-

tion that can be applied to w'w’T, the flux of the scalar

turbulent flux can be related to the mean gradient of the

turbulent flux via

ow'T

wwT = —Cyrw'w' (6.4)
where C, is another similarity constant. Again, this clo-
sure approximation can be criticized ad infinitum, but
the intent here is not to explore its predictive skill, only
to account for contributions to w’T’ originating from
w'w' T in the simplest possible manner. Noting that from
the mean continuity equation dw’T’/dz = S, Equation
(6.3) can be rewritten as

wT = é (—W’WTT + Cza% (rw/w/ST)
48—

+ 3= T T) . (6.5)
A number of features now become evident from this
derivation. Analogous to the Lagrangian approaches pop-
ularized by the so-called localized near-field theory or
LNF (Raupach, 1989; Katul et al., 1997; Siqueira et al.
2000, 2002, 2003), one source of departure from gradient-
diffusion theory applied to the mean scalar gradients is
explicitly shown to originate from heat sources and sinks
inside the canopy. This effect is analogous to ‘near-field’
effects in LNF. Moreover, the expression above does not
require a locally homogeneous flow field as assumed in

LNF because the vertical gradients in w’w’ are explicitly
considered. When expanding

[ p— T d
% (TW’W/ST) = rw’w/a—ZT + ST& (tw/w’ (6.6)

and noting that when

0, — oSt

— (tw'w) —

0z 0z (6.7)
ww St '

a locally homogeneous flow (as in LNF) becomes a plau-
sible approximation — at least within the confines of the
gradient-diffusion closure adopted for w'w’T’. Another
feature evident from this derivation, which could not have
been readily predicted from LNF, is the explicit role of
thermal stratification in the failure of gradient-diffusion
theory for heat inside canopies. The T; term here is always
positive for heat (but not necessarily for other scalars) and
can be large during daytime conditions, especially when
some mild nonstationarity contributes to the measured
turbulent temperature variance.
Finally, equation (6.1b) can be rewritten as

PwT N L (tww) gw'T LG

w' T

022 ™ww 0z Cr2w'w

_ L 287y (6.8)
A Ceww' 3T '

(Cava et al. 2006), which shows that the flux profile
W' T'(z) can be interpreted as a solution to a second-
order ODE formed as a superposition of two solutions.
The first is a homogeneous solution to Equation (6.8)
obtained by setting the right-hand to zero and hence
entirely described by vertical variations in 7 (that is con-
nected to the coherency in the flow) and w’w’. The second
solution is needed to match the nonhomogeneous term
(i.e. the right hand) in which the vertical variations in the
mean scalar quantities (T) and their variance (T'T’) fur-
ther adjust and modify the shape of w'T'(z). To summa-
rize, the above ODE describing w'T'(z) shows that a local
gradient-diffusion argument applied to the flux-transport
term can recover all the desirable features in Lagrangian
models (such as LNF), and goes further by revealing the
explicit effects of thermal stratification within the canopy
via T'T’ (discussed later). Next, a nonlocal description to
w'w'T’, connected to the ejection-sweep cycle, is explored.
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6.4.3 Linking the triple moment to the
ejection-sweep cycle

Ejections and sweeps are commonly defined and identified
via quadrant analysis (Lu and Willmarth, 1973; Antonia,
1981). Quadrant analysis refers to a joint scatter plotacross
four quadrants in a Cartesian plane whose abscissa is an
arbitrary flow variable s’ (e.g. s’ = «/, T') and whose ordi-
nate is generally the vertical velocity w’. For flow variables
where w's’ < 0, such as momentum (s’ = '), used here
for illustrating the terminology and definitions, the four

quadrants indicate four possible modes of transfer: events
in quadrants IT (¢ < 0, w' > 0) and IV (¢ > 0 and w'
< 0) are ejections and sweeps respectively, whereas events
in quadrants I (#/ > 0 and w' > 0) and III (¢ < 0 and
w' < 0) are outward and inward interactions, respectively
(Antonia, 1981). Opposite quadrants define scalar fluxes
for the flow variables where w's’ > 0, such as daytime
air temperature (s’ = T'). The imbalance in contribu-
tions to momentum (or scalar) transfer originating from
sweeps and ejections can be defined using the difference
in turbulent stress (or scalar flux) fraction contributions
of quadrant IV and quadrant II (for w'/ < 0) as

Ty — W
AS, = — V71 (6.9)

u'w'
(Nakagawa and Nezu, 1977; Raupach, 1981), where
u'w' is the total momentum flux (assumed negative) and

T T
YWy W

== and — are the stress fractions in quadrant IV

and II, respectively. This definition ensures that AS, is

bounded between —1 and 1 (assuming |#/w’| > 0). Based
on this definition, sweeps (or ejections) dominate the
momentum transfer when AS, > 0 (or AS, < 0). The
quantity AS, becomes ill defined when the mean stress
or turbulent flux become small (|#/w’| or |W| — 0).
A number of experiments have shown that AS, varies
appreciably with z and canopy density (see Figure 6.3)
especially for z/h, < 2.

Using the Gram—Charlier cumulant expansion method
(or CEM) for the joint probability density function (or
JPDF) described elsewhere (Frenkiel and Klebanoff, 1967)
truncated to third order, it was demonstrated (Raupach,
1981) that:

AS. — 14+ Ry, |: 2Cy n Cg
T Ruw'\/ 2 (1 + Ruw)z 1+ Ruw

where

] (6.10)

1 1
Ca =1+ Ry |:g (Mops — M3p) + 3 (M — M12)i|

Cp=— [é (2 = Ruw) (Mos — M3o) + % (M — MlZ)i|
(6.11)

and R,, = %, M;; = %, o, =+Vs? and where
w li=2 = u?. A number of studies noted that contri-
butions to AS, originating from the term £(Mos — M)
are small when compared to %(le — Mi,). Hence, this
observation led them to propose a simplified expression
for AS,, which they labelled as an incomplete third-order
CEM (or ICEM) given as:

1

ASy X ———— My — M (6.12)
0 ZRuW ,;27'[ 21 12
where

u'u'w

My = —
o’o,
www (6.13)

M12= 7
0,02,

For heat transport with w'T’ < 0, the derivation and
nomenclature remains the same as for momentum. How-
ever, when w'T’ > 0, the imbalance in contribution of
sweeps and ejection is evaluated by using the difference
in heat flux fraction originating from quadrants III and
I. Moreover, the application of the CEM and ICEM for-
mulations requires a minor coordinate transformation as
discussed elsewhere, when w' T’ > 0. When the JPDF is
Gaussian, AS, = 0. Stated differently, asymmetry in the
JPDF is necessary for sweeps and ejections to contribute
differently to turbulent fluxes. The fact that AS, # 0 and
can vary with z (Raupach, 1981; Poggi et al., 2004; Katul
et al., 2006a) has important implications to gradient-
diffusion closure models (see Figure 6.3 as an example
for momentum). To illustrate, assuming a linear relation
between M, and M,; as shown in many wind tunnel and
flume experiments and for dense canopies (Cava et al,
2006), the flux-transport term responsible for perturbing
gradient-diffusion theory can now be linked to A S, using
ICEM to yield

Tww  2+4/27R
My, = 3 ~ WCAS() (614)
O'TO'W Y

where yisa proportionality constantlinking My, and My, .
Hence, for near-neutral conditions (e.g. ¢ & 0), ejections
and sweeps perturb gradient diffusion theory via an addi-
tive term given as

0T T 9 (2V2”W’W/“TRWCASO) .
y

Gradient—

Diffusion Perturbation to gradient— diffusion

due to ejections and sweeps

(6.15)



6 Scalar Turbulence within the Canopy Sublayer 81
CSL experiments Data for a neutral boundary layer
2.5 T 0-9 T T
Flume-rods, dense
----- Flume-rods, sparse R\
O Loblolly pine forest 0.8 \\ 7
+  Alpine-coniferous forest R\
L a \
2 0.7 R\ R
\
\
W
I
! 0.6 R
1
15} i o .
1
! w0 0.5+ 1
s . %
N \ é;’
\ 0.4+ 1
\
A}
R 0.3F 1
AY
A
AY
\\ E
0.5 Y 0.2 fpmrmrmimim - - ==== |ncrease
' i Equilibrium region n rogghness
1 density
[c 0.7 prrmrmimimim i g mmmmm mim o]_Yy
+ Smooth BN
boundary P
O O 1 1 AY h
-0.5 0 0.5 -1 -0.5 0 0.5
AS, AS,

Figure 6.3 Left: Variations of measured AS, for momentum with normalized height for a dense (solid) and a sparse (dashed) rod
canopy. Measured values for a pine forest (Katul and Albertson, 1998) and an alpine coniferous forest (Cava et al., 2006) are also
shown — all suggesting that sweeps dominate momentum transport in dense canopies. Right: Variations of measured AS, across the
entire boundary layer above rough and smooth surfaces in a wind tunnel (three sample data sets taken from Raupach (1981) for
smooth, intermediate roughness, and very rough). The normalizing variables here are h, for the canopy experiments and the
boundary-layer thickness § for the wind-tunnel experiments. A positive AS, indicates that the momentum flux is dominated by
sweeps. Note that within the surface layer, where (z — d)/8 € [0.1, 0.2], |AS,| and dAS,/dz are small. Near the canopy top however,

both |AS,| and dAS, /0z are large.

Given that the AS, profile is generally not known, Equa-
tion (6.15) should only be viewed as ‘diagnostic’ rather
than prognostic. It is intended to show how variations
from the surface layer into the CSL across various stability
conditions, which introduce a vertical gradient in AS,,
bias flux predictions using gradient-diffusion theory.

6.4.4 Scalar variance

The previous section demonstrated how ejections and
sweeps perturb gradient-diffusion theories; this section
focuses on the role of the scalar variance term (= 4/3)
(g/T)T'T by examining the processes and scales impact-
ing its production and dissipation. The air temperature
variance budget for a stationary and planar homogeneous

flow in the absence of subsidence (Garratt, 1992; Siqueira
and Katul, 2002) is

(Th)
——

=0=—2wTTr—

— (13)
oT'T PN
=2 err

ot

owTT

(6.16)
——
(T2)
where Tj, T, and T; are associated with the variance pro-
duction, turbulent transport, and variance dissipation (as
before). By again invoking conventional closure approx-
imations for the variance dissipation and its transport
terms (Siqueira and Katul, 2002), given as
T T

Cy [_

- Y7
err = Cs— , wT'T 2
T
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where C; and C, are closure constants, the variance budget Equations ( 6.1_8) and (6.19) must be solved simultane-
reduces to ously when ', w2, and ©(z) are known.
e 7 Comparison between measured and modelled sensible
aT'T — d T — 0T .. . .
P 0=—-="2wTTI— rw _EW/Za_ heat fluxes inside a Loblolly pine canopy and an alpine
t z 4 z canopy are shown in Figures 6.4a to 6.4c. In this com-

2 parison, It was directly inferred from measurements and
_2C3T' (6.18) w? and T were computed using a higher order closure
schemes for the flow field. Clearly, accounting for %W
improves the model prediction over the near-neutral case
2T 8_32 [Tﬁ] 9T?  IGC— 26w T (g=0). Moreo.ver,.the agreen?ent between meas.ured ﬂl
+ - 7" = ——1I7 modelled AS, in Figure 6.4b is rather encouraging. T' T’

This equation can be rearranged to yield:

2 2 22 2 . .. . .
0z ™' 0z Wit Wt contributes to flux predictions, so its spectral properties
(6.19) are considered next, especially inside canopies.
(a) T T T T
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Figure 6.4 (a) Comparison between measured (symbols) and modelled (lines) sensible heat flux Hy(z) = pC, W T'(z) profiles within
a southern Loblolly pine forest for neutral (g = 0, dashed line) and unstable conditions normalized by their values above the canopy
(left panel). The model calculations are driven by measured I'r(z). The velocity field, including o, (z), and the relaxation timescale
needed in the flux budget equations were computed using a higher order closure model described elsewhere (Siqueira and Katul,
2002). For reference, the 0,,(z) comparison is shown (middle panel) for the pine forest (see picture). The modelled UZT from the scalar
variance budget is also used in the thermal stratification term of the sensible heat flux budget and its normalized value is compared to
measurements as well (right panel). The normalizing variable for o is T, = w/T'/u, at the canopy top. (b) Measured profiles of o,
T, o (top panels) in an alpine coniferous forest and comparison between measured and modelled sensible heat flux (bottom — left),
triple moments (bottom — middle), and AS, (bottom — right). Three modelled sensible heat flux profiles are shown: (i) K-theory
(dotted line) with only measured I'r, 0., and modelled 7 used, the heat-flux budget in the absence of thermal stratification (dashed),
and the full sensible heat flux budget (i.e. including measured o7); the modelled w'w' T’ is based on gradient-diffusion closure
(Equation (6.4)), and the modelled AS, is based on the ICEM expansion and modelled w'w’ T’ (Equation (6.14)). These comparisons
are for unstable atmospheric conditions (defined at the canopy top). (c) Same as Figure 4b but for stable conditions at the canopy top.
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6.4.5 Scalar spectra

For exploring scales controlling aspects of the scalar vari-
ance (and its decay) inside a canopy, the concentration
fluctuation spectra ¢..(k) of a generic scalar ¢ (including
temperature) is considered, where fooo ¢ec(k)dk = ¢/’ and
kis the wavenumber. The focus of this section is not on all
aspects of ¢ (k) but rather on the role of wake generation
in modifying the scaling laws of ¢..(k). It is precisely the
role of these wake-generation mechanisms on ¢.(k) that
have not been well studied in canopy turbulence.

As a starting point for exploring ¢..(k) at these scales,
the case for locally homogeneous and isotropic turbulence
is treated in the absence of a strong source or production
term so that I'r ~ 0), and for kh, > 1, resulting in an
equation given by

Aec(t, k)
a

(Corssin, 1964; Poggi, Katul and Albertson, 2006; Danaila
and Antonia 2009) where W, = —9T, ./dk is the trans-
fer of scalar variance via interactions between turbulent
velocity and scalar concentration fluctuations, which is
analogous to the flux transfer term in the scalar vari-
ance budget (Equation 6.16), and the term 2% x @ (t, k)
represents the molecular dissipation (analogous to &77),
where . is the molecular diffusivity of scalar c. Assum-
ing that the term T, . responsible for transferring vari-
ance from wavenumbers smaller than k to wavenum-
bers larger than k is modelled in direct proportion to
the available scalar energy at k, which is given as k¢ (k),
via a ‘scale-dependent’ relaxation time scale t(k), then
T,.. = ke.(k)/t(k) and the scalar spectral budget equa-
tion at steady-state reduces to

0 (kB

(Welt, k) = 2R xeee(t, K) - (6.20)

(6.21)

The general solution for an arbitrary t(k) can be expressed
as
(k) o k
¢cc(k) - Al exp |:_f Tﬁ (@) + ZXCkT(k)i|
(6.22)

(Danaila and Antonia, 2009) where A; is an integration
constant.

One possible generalization of the definition of 7 to a
wave-number dependent time scale is given as

~1/2

k
(k) = / P2 bre(p)dp (623)
0

(Poggi, Katul and Vidakovic, 2011), where ¢k is the
kinetic energy spectrum. This representation for t(k)
assumes that turbulent eddies at wavenumber k are
strained by all larger eddies characterized by wavenum-
bers < k. For a power-law TKE spectrum given by ¢rxg =
Arxpk™™, this relaxation time scale becomes a power-law
given by (k) = [(3 — m)/(Arek®=™)]""? (for m < 3),
and the scalar spectrum, subject to the condition that
the variance dissipation rate is &, = X, fooo oo (p)dp,
becomes

866(3 - m)l/z
2/ Arxe
4Xc(3 - m)l/z k(1+m)/2

op [_VATKE(I + m)

(Poggi et al., 2011). For the classical Kolmogorov inertial
subrange (ISR) spectrum (Kolmogorov, 1941), given by
drxe = Co (e1xp)* k=73, the scalar spectrum reduces
to ¢cc(k) = (3C0)71/2(8TKE)1/3855 (k75/3) as . — 0, in
agreement with ISR theories for scalars. For the case of
2-D turbulence at scales experiencing a direct enstro-
phy cascade (or inverse energy cascade), m — 3 and
¢ ~ k71, the outcome is consistent with the Batchelor
spectrum for 2-D turbulence and passive scalars (Batch-
elor, 1959; Wells et al., 2007). The spectral theory thus far
assumes that the spectrum is dominated only by energy
transfer and dissipation. In the case of canopy turbulence,
¢1xe may no longer be governed by clear scaling laws (as
in the ISR) due to the work that the mean flow exercises
against the foliage drag given as W, = u°/L .. The ability
to infer (k) from ¢rxe(k) becomes difficult given that
the canonical form of ¢rxp is not known a priori. In
this case, phenomenological arguments and dimensional
considerations would suggest that, at minimum, 7(k)
must depend on W,, the so-called enstrophy injection
rate (=p) originating from the canopy elements, and
wave number k. These dimensional considerations lead
to t(k) ~ B(Cgay w?)~'k=2, which when inserted into the
¢ (k) solution for an arbitrary 7(k), results in ¢p,. ~ k> as
Xxc — 0 (Poggi et al., 2011). This k=3 scaling for canopies
differs from the —3 power law first proposed for the
inertial-diffusive range (Gibson, 1968) at very low Prandtl
numbers (=v/x.), where v is the molecular viscosity.

To explore this canonical shape of the scalar spec-
trum when subjected to wake generation inside canopies,
flume experiments were conducted in a recirculating con-
stant head rectangular flume, 18 m long, 0.90 m wide, and
1 m deep (Poggi et al., 2006, 2011). The water level was
set to a steady and uniform value of 0.6 m. A canopy,

¢cc(k) = k<m*5)/2)

:| (6.24)
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LIF measurements deep inside a rod canopy (z/h. = 0.2)
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Figure 6.5 Top-left: Birds-eye view of LIF snap-shots illustrating the generation at the rod-scale (three rods in the vertical and two
rods in the horizontal are visible per image) and advection of von Karmén streets deep inside the canopy (z/h. = 0.2). Top-right: The
ensemble-averaged ¢,. illustrating the scale at which the onset of a k=3 power-law occurs. Note that the k> scaling occurs at scales
commensurate with or smaller than the rod diameter d,. A near k~>/3 is also evident for eddies larger than the rod diameter but
smaller than the scale at which mechanical production is injected into the flow. Bottom: The flume and the rod-canopy system. The
vertical velocity spectra (right) measured using laser-Doppler anemometry (also shown) across a wide range of canopy densities.
Note that wake production and the short-circuiting of the Kolmogorov cascade occurs inside the canopy and across all heights and

canopy densities.

composed of vertical cylinders that were 12cm tall
(=h.) and 0.4 cm in diameter (=d,) arrayed in a regu-
lar pattern at a density of 1072 rods m~2 was placed in a
test section that was 9m long and 0.9 m wide and was
some 7 m downstream from the channel entrance (Poggi
et al.,2004). The canopy density was equivalent to a dense
canopy having an element area index (frontal area per unit
volume) of 4.27 m?> m~2. The measured C; from these
flume experiments were comparable to drag coefficients
reported for dense forested ecosystems (Katul et al., 2004).
The local instantaneous dye concentration was measured
using the laser-induced fluorescence (LIF) technique in a
plane parallel to the channel bottom. The concentration
measurements were conducted by injecting rhodamine
6G as a tracer, providing a horizontal light sheet between
two lines of rods using a lens system, and recording a time

sequence of images. Images were collected at z/h. = 0.2
and recorded at 25 Hz using a colour CCD video camera
at a spatial resolution of 0.00017 m (704 x 576 pixels). A
sample sequence of an evolving Von Kdrman street from
this experiment is shown in Figure 6.5. Note that these
vortices are able to traverse the rod spacing without much
distortion from vertical turbulent fluctuations. The two-
dimensional spectrum from each image was computed,
normalized by the image variance, and the ensemble-
average spectrum obtained over all the images was
determined (see Figure 6.5). The ¢ ~ k>3 for k < d,
followed by an approximate ¢, ~ k=2 scaling for k > d,
agrees with the scaling analysis presented here given that
enstrophy injection occurs at scales commensurate with
d, in these experiments. Hence, scalar dispersion at fine
scales may share analogies with 2-D turbulence.
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6.4.6 Scalar co-spectra

A simplified budget equation for the co-spectrum between
the vertical velocity and scalars ¢, (k) can be also analysed
and is given by

e (k)

o T (v + xe) K?@ue(K)

= P(k) + T,e(k) + 7(k)
(6.25)

(Bos et al, 2004), where [ ¢uc(k)dk = w'c, P(k) =
(2/3)T.¢prxe(k) is the production term due to a finite
mean gradient (in the case of temperature, I', = I'1),
T, (k) is the turbulent flux transport term across k, and
7(k) is the pressure-scalar covariance (a dissipation term)
in the spectral domain. These terms mirror their counter-
parts in the scalar flux budget. As with the closure scheme
earlier adopted for ¢, the most simplified representation
for (k) is employed here for illustration, given by

_An¢wc(k)
(k)

(Bos et al., 2004; Bos and Bertoglio, 2007) where A is
a closure constant. Likewise, the transport term may be
modelled, as with the case for the ¢..(k) budget, via

B ke (K)
Lol = =4 ak( (k) )

Replacing these parameterizations in the co-spectral bud-
get, ignoring the molecular diffusive and viscous terms,
and defining a new variable given as W(k) = ¢,,.(k)/t(k),
the co-spectral budget equation reduces to

2 I gprxe(k)
3Ar kO

(k) = (6.26)

(6.27)

9 Ax 1o
a7 (k) + (A—T + 1) RGeS

(6.28)

For a ¢1xg = Akek™", the above equation can be solved
to yield

W(k) = B, k-+Anan 4 2 e !
3A7(1+Aq /AT — m
Argk™" (6.29)
where B; is an integration constantand m < 1 + A, /A .
If, as before, 7(k) = [(3 — m)/(Arxek=™)]"? (for m <
3), then
Due(k) = 3- mBlk—<5—m+zA,,/AT)/z
TKE
12
2T, ATKE 3- J—(m+3)/2 (6.30)

3A7 (1+ A /Ar—m)

For a classical ISR, Axr = C €TKE, m=15/3, (k) ~
k723, and @e(k) = a k7103 A/AT 4, k73 clearly
dominated by the k=7/3 term for large k. In fact, under
these assumptions, this budget recovers the classical
relation ¢y, (k) ~ I'.&!/3k~7/3. The above relation can also
be expressed as

Bucll) ~ (2 L !

3Ar m) drre(k)T(k)

(6.31)

and any power-law scaling in ¢,,.(k) must be a superposi-
tion of a power-law scaling arising from the TKE spectrum
and from the relaxation time scale (a measure of coherency
in the flow). In the classical ISR, ¢,,c(k) ~ k=>/3k=%/3 ~
k=773 as discussed elsewhere (Lumley, 1967). It should be
noted that very recent direct numerical simulations on
passive scalars in a locally homogeneous and isotropic
flow field did confirm the onset of a —7/3 scaling in the
scalar-velocity co-spectrum (Gotoh and Watanabe, 2012)
as well as a —5/3 scaling in the scalar spectrum.

Within the framework leading to equation (6.31) for
the CSL, a number of distortions to the power-law expo-
nents describing t(k) and ¢ ¢z (k) arise. For example, 7(k)
may be partially (or completely) decoupled from ¢yxg (k)
so that (k) # (fokp2¢TKE(p)dp)’l/2 as shown for the
(k) case when von Karman streets dominate the flow
(or even in an average sense as shown in Figure 6.2). Near
z/h, = 1, anumber of studies have also shown nontrivial
departures from —5/3 scaling for ¢rxp(k). These scaling
arguments beg the provocative question as to what extent
the canopy distortions of the classical ISR, especially above
the canopy, perturb the —7/3 scalar-velocity co-spectral
exponents. To address this issue, it is instructive to recast
Equation (6.31) with the following scaling arguments: if
¢rxe(k) ~ k™ and ©(k) ~ k™", then ¢,,(k) ~ k= with
® = m + n. Next, the degree of departure from the —7/3
scaling are decomposed into departures in the TKE scal-
ing from m = 5/3 and departures in the relaxation time
scale from n = 2/3. This argument assumes a priori that
7(k) is decoupled from ¢rxp(k) as indirectly supported in
Figure 6.2 and the ¢ (k) analysis. Recall that when t(k)
is entirely coupled to ¢rxg(k), then w = —(m/2 + 3/2).
Despite their immediate connections to the coherency in
the flow, the (k) spectra are rarely measured or reported
in the atmosphere. However, velocity spectra and scalar-
velocity co-spectra are routinely measured. By regress-
ing measured @ upon measured m and analysing the
regression statistics of the equation w = a,,m + b,, and
exploring whether a,, = 0.5 or a,, = 1.0, and b,, = 2/3
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or 3/2, the degree of coupling between ¢rxz(k) and (k)
can be quantified within the CSL. Such analysis was car-
ried out for velocity and multiple scalar concentration
turbulence measurements (temperature, water vapour,
and CO;) collected above three tall forested ecosys-
tems, where the measurement height (z,,) is situated
within the CSL (1 < z,,/h, < 2). Atmospheric stability
conditions were classified as neutral to weakly unstable
when —0.5 < &; < 0 and neutral to weakly stable when
0 < & < 0.5, where &; = (z,y — d)/L 1o, d is the zero-
plane displacement (=0.67 h.), and L, is the Obukhov
length. Details about the sites, data sets, and their pro-
cessing for the Loblolly pine forest (h. =19 m, LAl =5.5,
z,; = 20.2 m), the oak-hickory hardwood forest (h, =
25 m, LAI = 6, z,, = 40 m), and the alpine hardwood
canopy (h. =28 m, LAl =9, z,, = 33 m), are discussed
elsewhere (Cava and Katul, 2009; Cava et al., 2012). Fig-
ure 6.6 shows the ensemble-averaged measured velocity
and scalar spectra and vertical velocity-scalar co-spectra
above these three canopies and for all three scalars.

The expected ISR scaling laws are also shown in Fig-
ure 6.6. It is clear that the scalar co-spectra do not decay
as fast as —7/3 within the ISR (roughly, the region delin-
eated by frequencies where the vertical velocity follows an
approximate —5/3 scaling) despite the fact that the veloc-
ity component co-spectrum decays at—7/3 with increasing
frequency. To what extent the departures from —7/3 in the
scalar co-spectra can be explained by the departure from
-5/3 in the vertical velocity spectra is explored in Fig-
ure 6.7. It is clear from the analysis in Figure 6.7 that, to a
first order, the departures in the scalar co-spectrum expo-
nent can be partly (though not completely) explained by
the departure in the vertical velocity spectrum. Moreover,
the data here are suggestive that the slope and intercept
of the relation w = a,,m + b,, are closer to a,, = 1.0 and
b, = 2/3 than a,, = 0.5 and b,, = 3/2. Hence, it appears
that (k) ~ k=2/* despite departures from m = 5/3 in the
velocity. This necessarily implies that the spectrum of the
dissipation rate must also be adjusting beyond its inertial
value in the CSL, which was already anticipated from the
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Figure 6.6 Ensemble-averaged normalized spectra and co-spectra of the velocity and scalars (T for temperature, q for water vapour,
and C for CO,) measured above an alpine hardwood forest in Lavarone, Italy (diamonds), oak-hickory forest in North Carolina,
United States (circles), and a Pine forest in North Carolina, United States (stars) as a function of the dimensionless frequency n, where
h, is the canopy height, d is the zero-plane displacement, and U is the mean velocity. Dashed lines represent the power laws predicted
from Kolmogorov’s theory in the inertial subrange for the velocity spectrum (-5/3) and velocity-scalar co-spectrum (-7/3).
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Figure 6.7 (a) Scatter plot of spectral exponent of vertical velocity components («) against cospectral exponents (w) of uw (points),
wT (stars), wq (grey diamonds) and wC (grey circles). Continuous black line refers to the proposed linear relation between spectral
exponents (w = a—2/3); black dotted line refers to linear fit relative only to uw cospectra (@ = 0.98x-0.62; R = 0.38); grey dotted line
refers to the linear fit relative to all scalar data sets (WT, wq, wC cospectral exponents against w spectral exponent)

(w = 0.860—0.83; R = 0.45). (b) Residuals relative to the computed linear fits shown in Figure 6.7a.

flume experiments in Figure 2 (i.e. 3t/9z # k,/u, or even
constant for that matter in the CSL).

Thus far, the work presented here has dealt with scalar
spectra and velocity-scalar co-spectra at kh, >> 1. Next,
the structure of scalar turbulence for eddies commensu-
rate with k. and possible effects on scalar spectra at scales
kh, >> 1 are briefly considered.

6.4.7 Scalar fluxes, fine-scale turbulence
and ramp patterns

Numerous studies have reported that scalar concentra-
tion time series measured above vegetated and nonvege-
tated surfaces exhibit a repeating ramp (or inverse ramp)
pattern characterized by a gradual rise (or decrease) fol-
lowed by a relatively sharp drop (or rise). These ramp-
like features are generally absent in the concomitant i/ ()
series, suggesting that they are properties of coherent

scalar turbulence at large scales. These structures have
been observed in nonthermally stratified boundary layer
flows over smooth walls and rough walls (Warhaft, 2000),
and in canopy large eddy simulation runs (Fitzmaurice
et al., 2004). For CSL flows, ramp patterns have also
been reported within and above canopies (Bergstrom and
Hogstrom, 1989; Shaw et al., 1989; Paw U et al, 1992;
Cava et al., 2004; Thomas and Foken, 2007; Zhang et al.,
2011), indicating eddy coherence at scales commensurate
with h.. Moreover, ramp (or inverse ramp) patterns have
been noted at all atmospheric stability regimes and for
multiple scalars (Shaw et al., 1989; Collineau and Brunet,
1993; Brunet and Irvine, 2000; Cava et al., 2004), includ-
ing mildly stable stratified atmospheric conditions. In
fact, depending on whether the canopy is a source or a
sink of a scalar entity, ramps or inverse ramps exist as
shown in Figure 6.8. For the nocturnal temperature trace



6 Scalar Turbulence within the Canopy Sublayer 89

T (K)
()

C’ (mg m™)
S

Time (min)

Figure 6.8 Time series of air temperature, CO, and water vapour concentration fluctuation measured above a Loblolly pine forest
during mildly stable conditions at night. Note the inverse ramp patterns when w'T" < 0 and the regular ramp patterns when w’q’ or

w'C' > 0 (nocturnal ecosystem respiration and evaporation).

in Figure 6.8, the canopy is a sink of heat and inverse
ramps prevail in the temperature time series. For these
same nocturnal conditions, the canopy is a source of
CO; due to the fact that respiration dominates the flux
in the absence of any leaf photosynthesis (as expected
when the incident photosynthetically active radiation is
small). Moreover, the canopy is generally a small source
of water vapour at night, as evidenced by a large number
of studies (Novick et al., 2009). For the latter two scalars,
Figure 6.8 shows that regular ramps, identical to those
reported in heated laboratory boundary layers, emerge
(Warhaft, 2000).

Scalar ramps have also been shown to contribute sig-
nificantly to the turbulent flux (Shaw et al. 1989; Paw U
et al., 1992, 1995; Katul et al., 1996; Spano ef al., 1997,
2000; Castellvi et al., 2002, 2006). However, a clear phe-
nomenological theory that predicts their onset has been
lacking.

As early as 1935, Higbie proposed a surface renewal the-
ory to investigate interfacial heat transfer between a lig-
uid and a gas (Higbie, 1935); this approach is now gaining

some popularity in micrometeorology and surface hydrol-
ogy (Paw U et al., 1995; Katul et al., 1996; Spano et al., 1997;
Spano et al., 2000; Castellvi et al., 2006). Higbie visualized
heat transport as occurring by the arrival of fresh trans-
porting fluid elements originating from the bulk fluid
above a heated surface, followed by an unsteady diffu-
sion transport during surface contact (or residence time)
between these fluid elements and the surface, and finally
the eventual replacement of the stale element by a fresh
fluid from aloft. Figure 6.9 shows schematically the Hig-
bie surface renewal framework extended to a canopy for
CO,, leading to a ‘ramp-like’ motion (Paw U et al, 1995).
The size of these ramps above the canopy varies with ther-
mal stratification, with a minimum size at or near neutral
condition and increases as the stability regimes shifts to
either unstable or stable conditions (Lu and Fitzjarrald,
1994; Barthlott et al., 2007; Zhang et al., 2011).

The implications of such a ramp-like pattern on the fine
scale structure of scalars within the ISR and on scalar flux
models conclude this review. With regards to the ISR, it
was noted by Warhaft that ‘while the ramp-cliff structures
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Ejection
[w' >0

Air parcel % ¢
(depleted

in CO,) Air parcel

(enriched
with CO,)

Figure 6.9 Illustration of the connection between
the ramp-like patterns in the turbulent scalar
concentration time series, the ejection-sweep cycle,
and the renewal process using nocturnal CO,

Forest floor and
aboveground
respiration
(source of CO,)

concentration measurements collected just above a
pine forest (z/h, = 1.12). Parcels of air, comparable
to the canopy height, with ambient CO,
concentration sweep into the canopy (v’ < 0),

h reside within the canopy volume for about 1
minute, and eject out (w' > 0), imprinting a
‘ramp-like’ structure in the scalar concentration
time series shown. During nocturnal conditions,
above ground biomass (including foliage and woody

components) and forest floor are both respiring
| (i.e. sources of CO,).

are large-scale features, on the order of an integral scale,
the front itself is sharp, and thus is manifested at the small
scales’ (Warhaft, 2000). Subsequent experiments suggest
that this sharp front becomes even sharper at higher Tay-
lor microscale Reynolds numbers, thereby compounding
its effects on the ISR (especially in the atmosphere). The
presence of ramps was also used to explain why intermit-
tency correction parameters to Kolmogorov’s 1941 theo-
ries for the ISR appear larger for scalars when compared
to velocity (Mahrt and Gibson, 1992; Mahrt and Howell,
1994; Warhaft, 2000; Katul et al., 2006b). One such anal-
ysis made use of Tsallis’s nonextensive thermostatistics
(Tsallis, 1988; Bolzan et al., 2002; Ramos et al., 2004),
which provided a unifying framework to investigate two
inter-connected problems: similarity between scalars and
velocity statistics within the inertial subrange and ‘con-
tamination’ of internal intermittency by ‘external’ factors.
It was shown that conventional ‘internal’ intermittency
models, including the She-Leveque, Lognormal, and Log-
stable, reproduce well the observed Tsallis parameters
for velocity statistics within the inertial subrange, but
fail to describe the fluctuations for the scalars (Katul
et al., 2006b). Scalars also appear more intermittent than
velocity when the underlying surface is a large source
or sink, thereby confirming an ‘external’ intermittency
contribution. In fact, numerical experiments in which a
synthetic time series was composed of a linear superposi-
tion of a mono-fractal process (such as fractional Brow-
nian motion) and a periodic ramp-like trace exhibited
large intermittency corrections resembling those of scalars
(Katul et al., 2006b). These findings agree with recent

Large Eddy Simulation studies applied to the atmospheric
boundary layer (Mazzitelli and Lanotte, 2012).

Another line of research uses the presence of ramps
as a practical method to infer sensible heat flux from
temperature traces, as first proposed by Paw U and co-
workers (Paw U et al., 1995). Because temperature traces
are more convenient to acquire than simultaneous air
temperature and velocity series, the method does offer
practical advantages over eddy-covariance approaches.
The basic premise is that, in a Lagrangian frame of refer-
ence, a parcel of air will change its air temperature due to
molecular diffusion of heat into or out of the parcel vol-
ume or collisions with a heat source resulting in

dT T

—_— = P 6.32
dt XTax]' aX]‘ ( )

+Sr
where repeated indices imply summation, as common in
index notation. If the Peclet number is sufficiently large,
then the heat loss or gain by molecular diffusion can be
ignored and the air parcel will experience a change in
temperature only when it exchanges heat with a source
St. To transpose this Lagrangian view to a Eulerian frame
of reference

dr  aT oT

_ w2t
P
0x;

—_— = — 6.33
dt ot ( )

~ St
where T and u; are the instantaneous temperature and
velocity. High-frequency Eulerian measurements of air
temperature provide estimates only of 97/9t. However, as
argued elsewhere (Paw U et al, 1995; Katul et al., 1996),
because u;d7T/dx; is a product, its significance must be
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at frequencies higher than those governing T. For exam-
ple, if u ~ e and T ~ ¢, then uT ~ ¢"%*%) which
is at a higher frequency than T. With the assumptions
that the ramp time scale is sufficiently long (e.g. 1 minute
in Figure 6.9), contributions to u;dT/0x; can be ignored
at those timescales. Furthermore, assuming that the vol-
ume of the air parcel is coherent, commensurate with the
canopy volume, and the temperature in the ramp is well
mixed,

(6.34)

where V,, is the air volume associated with the ramp and
Ay is the ground area. Here, the ground is treated as a
source (instead of a flux), and eddies producing the ramp
pattern fully penetrate the canopy and touch the ground. If
V./A¢ ~ h, and upon conditionally sampling the series
to infer 9T/ dt only during its residence time in the canopy
(Figure 6.9), then the method can yield estimates of scalar
fluxes from the mean rise or mean drop of the ramp
structure. A number of studies reported some success
in using this approach to infer sensible heat provided
some calibration is carried out (Spano et al., 1997; Spano
et al., 2000; Castellvi et al., 2002, 2006; Castellvi, 2004).
While the practicalities and calibration parameters of this
method, now known as surface renewal analysis, are still
being worked-out, the theoretical appeal that coherent
motions in the scalar field explain much of the scalar
fluxes is quite seductive.

6.5 Summary and conclusions

The bulk and spectral properties of scalar turbulence
within the canopy sublayer (CSL) have been presented.
A unifying Eulerian framework that bridges between a
number of arguments generally invoked to explain the
failure of gradient diffusion theory (W' T' ~ 3T/dz) in the
scalar field was proposed for the CSL. It was shown that
‘closing’ the flux-transport term via the most primitive
local gradient-diffusion scheme (i.e. w'w'T" ~ dw' T’ /9z)
explicitly reveals why the near-field effects in the scalar
source impact gradient-diffusion theory. Upon linking
the (same) flux-transport term to the ejection-sweep cycle
via a cumulant expansion method, the explicit causal link
between coherent structures and the failure of gradient
diffusion can be unlocked. Another benefit to the pro-
posed framework is the role of the scalar variance (con-
nected to the buoyancy term) in the failure of gradient

diffusion theory, which cannot be readily predicted by
Lagrangian methods.

A defining syndrome of canopy turbulence, especially
deep inside the canopy, is the significant role of wake gen-
eration. The effects of these wakes on the mean and turbu-
lent kinetic energies as well as the spectral short-circuiting
have been studied. However, a theory that attempts to
predict the shape of the scalar spectrum following the
injection of wake energy remains lacking. A novel the-
oretical argument complemented by results from flume
experiments presented here showed that, at scales larger
than the wake energy injection scale, the scalar spectrum
scales as k2. These predictions agree with flume exper-
iments when the canopy is composed of densely arrayed
steel rods with uniform diameters. The co-spectral prop-
erties between scalar fluctuations and the vertical velocity
at scales larger than the shear injection scale (~h.) were
also explored. It was shown that the co-spectral depar-
tures from the classical —7/3 scaling law can be partly
explained by departures in the spectrum of the vertical
velocity from —5/3, provided the relaxation time scale
spectrum does not appreciably diverge from its k=2/3
value.

Finally, the presence of ramp-like signatures at scales
commensurate with /. was briefly reviewed. It was shown
that a renewal process can phenomenologically explain
the shape of ramps. This same phenomenological theory
can be used to predict scalar fluxes from high-frequency
scalar concentration time series, provided proper calibra-
tion and ramp identification schemes in the time series
(especially during the sweeping and residence phases) are
employed. The presence of ramps on the enhancement of
fine-scale intermittency due to external factors was also
briefly covered.
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