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Anisotropy in the turbulent stress tensor, which forms the basis of invariant analysis, is
conducted using velocity time series measurements collected in the canopy sublayer (CSL)
and the atmospheric surface layer (ASL). The goal is to assess how thermal stratification
and surface roughness conditions simultaneously distort the scalewise relaxation towards
isotropic state from large to small scales when referenced to homogeneous turbulence. To
achieve this goal, conventional invariant analysis is extended to allow scalewise information
about relaxation to isotropy in physical (instead of Fourier) space to be incorporated.
The proposed analysis shows that the CSL is more isotropic than its ASL counterpart
at large, intermediate, and small (or inertial) scales irrespective of the thermal stratification.
Moreover, the small (or inertial) scale anisotropy is more prevalent in the ASL when
compared to the CSL, a finding that cannot be fully explained by the intensity of the mean
velocity gradient acting on all scales. Implications to the validity of scalewise Rotta and
Lumley models for return to isotropy as well as advantages to using barycentric instead of
anisotropy invariant maps for such scalewise analysis are discussed.
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I. INTRODUCTION

The classical treatment of turbulence in the atmospheric surface layer (ASL) and the roughness
sublayer (CSL) above canopies has primarily focused on distortions to the mean velocity profile
caused by the presence of roughness elements and thermal stratification [1–9]. Surface roughness
effects and thermal stratification modify the components of the Reynolds stress tensor, as evidenced
by a large number of experiments and simulations [5,10–19]. These modifications are expected to
lead to differences in kinetic energy distribution among velocity components comprising the stress
tensor. Such differences in energy anisotropy has been previously used to explore the sensitivity of
turbulent structures to surface boundary conditions such as roughness changes [20–25] or thermal
stratification [26]. However, the route of how the anisotropy at large scales relaxes to quasi-isotropic
state at small scales remains a subject of research [27–31]. The juxtaposition of these questions and
studies to ASL and CSL turbulence using field measurements is the main motivation for the work here.

Exchanges of turbulent kinetic energy among the three spatial components occur through
interactions between fluctuating velocities and pressure. Starting from an anisotropic stress tensor
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uiuj , these exchanges have been labeled as return to isotropy; when mean flow gradients are removed
or suppressed, they describe the expected state that turbulence relaxes to. Here, ui are the turbulent
or fluctuating velocity components along xi , where x1 (or x), x2 (or y), and x3 (or z) represent the
longitudinal, lateral, and vertical directions, respectively, the overbar denotes time averaging, and
ui = 0. Much progress has been made by exploring connections between uiuj and the so-called
invariant analysis [22,30,32–36]. Such connections resulted in nonlinear models for the slow part
of the pressure-strain correlation and highlighted distinct routes along which turbulence relaxes to
isotropic conditions [27,33,34]. These routes have been succinctly summarized in what are labeled
as anisotropy invariant maps (AIM), proposed by Lumley [33,34]. Invariant analysis is based on the
anisotropic second-order normalized stress tensor related to uiuj by

aij = uiuj

2k
− 1

3
δij , k = umum

2
, (1)

where k is the mean turbulent kinetic energy and δij is the Kronecker delta. This tensor has three
invariants: I1 = aii = 0, here and I2 = aij aji and I3 = aij ajnani , which are independent of the
coordinate rotation of the reference system and can be linked to the eigenvalues of aij . Invariant maps
feature I3 (abscissa) versus −I2 (ordinate) along with bounds imposed by realizability constraints on
uiuj (e.g., det[aij ] � 0, where det[· ] is the determinant). The I2 represents the degree of anisotropy
whereas I3 represents the nature (or topology) of the anisotropy. The AIM approach suggests that
anisotropy in uiuj may be 1-component (rodlike energy distribution), 2-component (disklike energy
distribution), or 3-component, of which the isotropic state (spherical energy distribution) is a limiting
case. Depending on the sign of I3, progression from 1-component or 2-component to 3-component
follows an axisymmetric expansion or contraction on the AIM when the source of inhomogeneity
(e.g., mean flow gradients) is removed until isotropy is achieved [34]. As noted earlier, the AIM
domain bounds all realizable Reynolds stress invariants [22,34,37,38], thereby making AIM an
effective visual tool to track anisotropy at different heights in boundary layer turbulence. In fact, the
AIM proved to be effective at demonstrating that rough-wall turbulence appears more isotropic than
its smooth-wall counterpart for the same Reynolds numbers [21]. Experiments and simulations [25]
also reported that the AIM signature for smooth wall turbulence appears well defined and robust
to variations in Reynolds number. The same experiments further showed that turbulent flows over
three-dimensional (3D) k-type roughness appear more isotropic than flows over their 2D k-type
roughness counterparts throughout the boundary layer [25].

An alternative to the AIM representation is the barycentric map (BAM), which offers a number of
advantages over AIM, such as nondistored visualization of anisotropy and weighting of the limiting
states, as discussed elsewhere [32]. However, AIM and BAM representations are connected by
transformations derived from the three eigenvalues of aij . Invariant analysis in aij assumes that
anisotropy is inherently a large-scale feature, and finer scales become isotropic and decoupled
from their anisotropic large scales counterpart. How anisotropy in aij is destroyed as eddy sizes
or scales become smaller remains a subject of inquiry, especially in vertically inhomogeneous flows
characterizing the ASL and CSL of the atmosphere. The ASL and CSL experience mechanical
production of k through interactions between the turbulent shear stress and the mean velocity profile.
However, additional sources (or sinks) of k occur through surface heating (or cooling) and their
associated thermal stratification. Above and beyond these two processes, canopy roughness effects
introduce additional length scales (e.g., adjustment length and shear length scales) when describing
flow statistics in the CSL [5,39].

Two early pioneering attempts to extend invariant analysis across scales were conducted in the
Fourier domain. One utilized numerical simulations of isotropic turbulence [28]. The other considered
3-component velocity time series collected in a pipe at multiple distances from the pipe wall and
at two bulk Reynolds numbers [23]. The simulation study showed that small-scale anisotropy in
Reynolds stresses persisted and was traced back to nonlocal triad interactions that appear not efficient
at destroying an initial spanwise energy injection. The pipe flow experiments showed that, at large
scales, near-wall structures exhibit “rod-like” (or prolate) energy distribution whereas “disk-like”
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(or oblate) energy distribution characteristics were reported as the buffer region is approached.
Approximate isotropic states were reported as the pipe center is approached, where the mean velocity
gradients approach zero (by virtue of symmetry). Another recent study [26] also extended aspects of
invariant analysis across scales in the Fourier domain to explore how thermal stratification modifies
isotropic and anisotropic states above an urban canopy. This work showed that the relaxation rate
towards local isotropy varies with thermal stratification. Specifically, unstable atmospheric stability
appears to be closer to the isotropic state than its near-neutral or stable counterpart at a given scale or
wave number. A relation was suggested between the scale over which maximum isotropy is attained
and an outer length scale derived from temperature statistics [26].

The work here uses invariant analysis across scales in the ASL and CSL to explore the simultaneous
role of roughness contrast and thermal stratification on anisotropy relaxation towards quasi-isotropic
conditions. How anisotropy in aij produced at large scales varies with thermal stratification in the
ASL and CSL and how such a large-scale anisotropic state relaxes to quasi-isotropic conditions at
progressively smaller scales frame the scope of the work. The novelties of the analysis proposed
here over prior work [23,26] are that (1) velocity differences in physical space are used instead of
spectral and cospectral analysis, and (2) both AIM and BAM measures of anisotropy are employed
and their outcome compared to conventional local isotropy analysis. Advantages to conducting the
analysis in physical space instead of spectral space are discussed.

With regards to the experimental design, the 3-component velocity time series were simultaneously
collected in the CSL above a tall forest and in the ASL above an adjacent desert-like shrubland. The
runs spanned a wide range of atmospheric stability conditions as characterized by the atmospheric
stability parameter. Distances to the surface or zero-plane displacement (in the case of the forest) were
similar for both setups and were chosen to be commensurate with the aforementioned experiment on
the urban surface layer [26]. It is envisaged that the analysis reported here offers a new perspective on
the relative sensitivity of turbulent structures to roughness modifications and thermal stratification,
especially at the crossover from large (or integral) scales to inertial scales.

II. METHOD OF ANALYSIS

A. Definitions and nomenclature

Any three-dimensional second-rank tensor σij has three independent invariant quantities associ-
ated with it, which can be determined from the eigenvalues of σij . The eigenvalues (λ) are computed
from the determinant det[σij − λδij ] = 0. Expanding the determinant of the matrix⎡

⎣σ11 − λ σ12 σ13

σ21 σ22 − λ σ23

σ31 σ32 σ33 − λ

⎤
⎦

and setting it to zero yields the characteristic equation that defines the invariants and is given by [40]

det[σij − λδij ] = −λ3 + I1λ
2 − I2λ + I3 = 0, (2)

where

I1 = σkk = tr[σ ], (3)

I2 = 1
2 (σiiσjj − σijσji), (4)

I3 = det[σij ], (5)

with tr[·] being the trace of σij . When σij = aij , symmetry insures that Eq. (2) has three real roots
(the eigenvalues) labeled as λ1, λ2, and λ3. The principal stresses are defined as components of σij

when the basis is changed so that the shear stress components become zero and σij becomes a 3 × 3
diagonal matrix whose elements are σ1, σ2, and σ3. These principal stresses are the three eigenvalues
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ordered by magnitude using σ1 = max(λ1,λ2,λ3), σ3 = min(λ1,λ2,λ3), and σ2 = I1 − σ1 − σ3. The
σ1, σ2, and σ3 are independent of the coordinate basis in which the components of σij are originally
derived, which is advantageous in ASL and CSL field studies where large variations in wind directions
are unavoidable. Applying the diagonal form of σij to the definitions of the three invariants given by
Eq. (2) yields the following simplified expressions:

I1 = σ1 + σ2 + σ3, (6)

I2 = σ1σ2 + σ2σ3 + σ3σ1, (7)

I3 = σ1σ2σ3. (8)

These definitions directly apply to aij or any other second-rank tensor such as the strain rate [40,41]
and others relevant to vorticity and dissipation [20]. One advantage to using aij here instead of
uiuj for invariant analysis is that I1 = tr[aij] = a11 + a22 + a33 = 0 and only the second and third
invariants are required.

The BAM framework makes use of the fact that aij can be expressed as a linear combination of
three limiting states (1-component, 2-component, or 3-component). That is, aij can be decomposed
into C1ca1c + C2ca2c + C3ca3c, where C1c, C2c, and C3c are determined from the eigenvalues
using [32]

C1c = λ1 − λ2, (9)

C2c = 2(λ2 − λ3), (10)

C3c = 3λ3 + 1, (11)

and a1c, a2c, and a3c are 3 × 3 diagonal matrices with diagonal elements [2/3,−1/3,−1/3] (1-
component limiting state), [1/6,1/6,−1/3] (2-component limiting state), and [0,0,0] (3-component
limiting state). In the BAM representation, C1c, C2c, and C3c determined from λ1, λ2, and λ3 indicate
how much each turbulent state is contributing to a point situated in the map. The map itself can
be constructed within an equilateral triangle with vertices being the three limiting states defined
by coordinates (x1c,y1c) = (1,0), (x2c,y2c) = (−1,0), and (x3c,y3c) = (0,

√
3). Once these limiting

states are set, a normalization is applied so that C1c + C2c + C3c = 1 and the coordinates of any
point on the map (xBAM,yBAM) can be determined from

xBAM = C1cx1c + C2cx2c + C3cx3c, (12)

yBAM = C1cy1c + C2cy2c + C3cy3c. (13)

As discussed elsewhere [32], an equilateral triangle shaped BAM does not introduce any visual
bias of the limiting states as is the case for the AIM. Randomly distributed points within BAM,
when converted to AIM, result in visual clustering near the isotropic or 3-component state primarily
because of the nonlinearity in the transformation from BAM to AIM.

B. Measures of anisotropy

A scalar measure of anisotropy in the AIM is the shortest or linear distance to the isotropic state.
This distance was determined from I2 and I3 via [22,33]

F = 1 + 27I3 + 9I2. (14)

Isotropic turbulence is strictly attained when both I2 = I3 = 0 and F = 1, whereas F = 0 occurs
along the linear boundary describing the 2-component state. The distance F was reported to be a
function of distance from a solid boundary for various turbulent boundary layer flows [22–25]. At all
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distances from the boundary, F was smaller for turbulent flows over smooth walls when compared
to all types of rough-wall cases [24,25].

In the BAM, the distance to the isotropic state is [32]

Cani = −3λ3. (15)

This measure has not been extensively used before, and is employed along with F for the data
collected in the ASL and CSL.

C. Scalewise analysis

The scalewise analysis of AIM and BAM uses the structure function approach (in physical or r

space) instead of Fourier space. The overall premise is similar to what was proposed earlier [28] except
that structure functions ensure integrability and minimize other limitations discussed elsewhere for
spectral and co-spectral versions [23]. The premise of the scalewise AIM or BAM analysis is to
replace uiuj by

Dij (r) = 1
2�ui(r)�uj (r), (16)

where �uk(r) = uk(x + r) − uk(x), and r is the separation distance along the longitudinal (or x1)
direction determined from time increments and Taylor’s frozen turbulence hypothesis [42,43], which
is conventional when interpreting time series in field experiments. Equation (16) has a number of
desirable limits. To illustrate, consider its expansion given as

Dij (r) = 1
2 (ui(x + r)uj (x + r) + ui(x)uj (x)) − 1

2 (ui(x + r)uj (x) + ui(x)uj (x + r)). (17)

For planar homogeneous flows and at r/LI � 1, Dij (r) ≈ ui(x)uj (x) [or Dij (r) ≈
ui(x + r)uj (x + r)], where LI is the integral length scale of the flow (to be defined later).
Hence, Dij (r) recovers all the properties of the stress tensor at large scales. For r → 0, Dij (r) → 0
and ensures no energy and stress contributions at very small scales. The use of Dij (r) is rather
convenient because expected scaling laws for inertial subrange eddies are known. For example,
when i = 1 and j = 1, D11(r) becomes the longitudinal velocity structure function, which measures
the integrated energy content at scale r . It is noted here that rdD11(r)/dr ∝ k1E11(k1), where k1 is
the one-dimensional wave number along direction x1 and E11(k1) is the longitudinal velocity energy
spectrum. Likewise, for r/LI � 1, D11(r) → u1u1. Because structure functions measure integrated
energy content at a given scale r , the singularity issues in Fourier domain noted elsewhere [23]
are bypassed. For locally isotropic turbulence and for η/LI � r/LI � 1, Kolmogorov (or K41)
scaling is expected to hold in the ASL and yields the following for the componentwise structure
functions:

D11(r) = Co,1ε
2/3r2/3, (18)

D22(r) = Co,2ε
2/3r2/3, (19)

D33(r) = Co,3ε
2/3r2/3, (20)

where η = (ν3/ε)1/4 is the Kolmogorov microscale, ν is the fluid kinematic viscosity, Co,2 = Co,3 =
(4/3)Co,1, Co,1 = 2, and ε is the mean dissipation rate of k. One undesirable outcome to using
Dij (r) is its nonzero trace at any r . As was the case with aij and ui(x)uj (x), this outcome may be
circumvented by evaluating

Aij (r) = Dij (r)

Dkk(r)
− 1

3
δij . (21)

The AIM and BAM as well as F (r) and Cani(r) can now be computed for the ASL and CSL velocity
time series once the eigenvalues of Dij (r) or Aij (r) are determined for each r > 0.
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D. Comparison with a reference model

To compare the computed scalewise variations of I2 and I3 in the CSL and ASL with a well-studied
turbulent state, homogeneous turbulence (i.e., lacking any mean flow gradients) is selected as a
reference. Once the mean flow gradients are removed for this reference state, the decay rates of I2

and I3 are shown to reasonably follow a quadratic model given by [27]

dI2

dτ
= −2(B1 − 2)I2 + 2B2I3, (22)

dI3

dτ
= −3(B1 − 2)I3 + 1

2
B2I

2
2 , (23)

where τ is a relaxation time scale, and B1 = 3.4 and B2 = 3(B1 − 2) are constants determined by
fitting this model to a wide range of experiments. For B2 = 0, this system recovers the Lumley
model [33] (i.e., uncoupled equations), and for B2 = 0 and I3 = 0, the classical Rotta model is
recovered. Hence, finite B2 and I3 offer a clear indication that the linear Rotta model may not be
adequate to describe the trajectory towards isotropy. The two ordinary differential equations can now
be combined to yield

dI2

dI3
= −2(B1 − 2)I2 + 2B2I3

−3(B1 − 2)I3 + 1
2B2I

2
2

, (24)

which can be solved to yield −I2 as a function of I3 (i.e., the trajectory on the AIM) without requiring
the determination of time τ provided τ is sufficiently large to attain the isotropic state. The trajectories
of this model (in AIM or BAM) are simply computed here to illustrate how homogeneous turbulence
relaxes to the isotropic state once the mean flow gradients (that are prevalent in ASL and CSL) are
suppressed. The initial conditions to equation (24) are the measured I2 and I3 in the CSL or ASL as
determined for r/LI � 1.

III. EXPERIMENTS

A. Research site

The experiments were conducted at the Yatir Forest in southern Israel, which is a planted evergreen
pine forest surrounded by a sparse desert-like shrubland [44]. The trees were planted in the late 1960s
and now cover an approximate area of 28 km2 [44]. The primary tree species of the forest is Pinus
halepensis and the shrubland has scattered herbaceous annuals and perennials (mainly Sarcopoterium
spinosum). The albedo of the forest is low (=12.5%) when compared to the shrubland (=33.7%). In
the absence of latent heat fluxes (as is the case in the extensive dry season), this albedo contrast leads
to sensible heat fluxes up to 800 W m−2 during the day over the forest, which can be twice as high
as those of the surrounding shrubland [45]. The higher roughness length of the forest also creates
friction velocities (u∗) of up to 0.8 m s−1, which are twice as high as those above the shrubland
[45]. These sensible heat flux and friction velocity differences between the forest and shrubland do
impact the generation of k. To illustrate, a stationary and planar-homogeneous flow at high Reynolds
number in the absence of subsidence is considered. The k budget for such an idealized flow is

∂k

∂t
= 0 = −u1u3

dU

dz
+ βogu3T ′ + PD + TT − ε, (25)

where t is time, and the five terms on the right-hand side of Eq. (25) are mechanical production,
buoyant production (or destruction), pressure transport, turbulent transport of k, and viscous
dissipation of k, respectively; βo is the thermal expansion coefficient for air (βo = 1/T , T is mean
air temperature and T ′ is temperature fluctuation), g is the gravitational acceleration, −u1u3 = u2

∗
is the turbulent kinematic shear stress near the surface, u3T ′ is the kinematic sensible heat flux from
(or to) the surface, and U is the mean longitudinal velocity. The ρaCpu3T ′ defines the sensible
heat flux in energy units (W m−2), with ρa and Cp being the mean air density and the specific heat
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capacity of dry air at constant pressure, respectively. When u3T ′ > 0, buoyancy is responsible for
the generation of k and the flow is classified as unstable. When u3T ′ < 0, the flow is classified as
stable and buoyancy acts to diminish the mechanical production of k. The relative significance of
the mechanical production to the buoyancy generation (or destruction) in the TKE budget may be
expressed as [10,13,14]

−u1u3
dU

dz
+ βogu3T ′ = u3

∗
κz

[
φm(ζ ) + κzβogu3T ′

u3∗

]

= u3
∗

κz
[φm(ζ ) − ζ ], (26)

where

κz

u∗

dU

dz
= φm(ζ ), ζ = z

L
, L = − u3

∗
κgβou3T ′ , (27)

and φm(ζ ) is known as a stability correction function reflecting the effects of thermal stratification on
the mean velocity gradient [φm(0) = 1 recovers the von Karman–Prandtl logarithmic law], κ ≈ 0.4 is
the von Karman constant, and L is known as the Obukhov length [46] as described by the Monin and
Obukhov similarity theory [1,2,7,9]. The physical interpretation of L is that it is the height at which
mechanical production balances the buoyant production or destruction when φm(ζ ) does not deviate
appreciably from unity. For a neutrally stratified atmospheric flow, |L| → ∞ and |ζ | → 0. The sign
of L reflects the direction of the heat flux, with negative values of L corresponding to upward heat
fluxes (unstable atmospheric conditions) and positive values L corresponding to downward heat flux
(stable atmosphere).

B. Instruments and measurements

High-frequency measurements of the turbulent velocity components were conducted concurrently
in the CSL over the forest and the ASL of the surrounding shrubland desert ecosystem. The
measurements in the ASL were conducted northwest of the forest above the shrubland with a mobile
mast positioned at latitude 31.3757◦, longitude 35.0242◦, and 620 m above sea level. The mast was
equipped with a R3-100 ultrasonic anemometer from Gill Instruments Ltd. (Lymington, Hampshire,
UK) sampling three orthogonal velocity components with a frequency of 20 Hz. The ultrasonic
anemometer was mounted at a height of 9 m above ground surface. The measurements in the CSL
were conducted above the forest canopy with a R3-50 ultrasonic anemometer from Gill Instruments
with a measurement frequency of 20 Hz (latitude 31.3453◦, longitude 35.0522◦, 660 m above sea
level). The manufacturer states for both ultrasonic anemometers an accuracy <1% for mean wind
speeds below 32 m s−1. Wind tunnel and atmospheric comparison to hot-film anemometers showed
an accuracy of 2% for the mean wind speed, 9% for variances, and 23% for covariances [47].
The sonic anemometer was mounted 19 m above the ground surface on a meteorological tower. The
mean height of the trees around the tower is 10 m, placing the sonic anemometer some 9 m above the
canopy top and commensurate to the setup of the urban roughness study previously discussed [26].
The anemometer sonic path length is 0.15 m; hence, separation distances smaller than 0.3 m are not
used as they are influenced by instrument averaging. Data from the period 17–23 August 2015 are used
here. During this period, the Yatir forest experienced a subtropical ridge, an area of general subsidence
in the troposphere connected to the sinking branch of the Hadley cell [48]. The horizontal air pressure
gradients were controlled by a heat-induced surface low, the Persian trough, to the east [49]. This
led to stationary weather conditions with a main wind direction from the northwest and cloud-free
conditions with a radiation driven diurnal cycle of the boundary layer height during the campaign.
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C. Post-processing

The measured ui time series were first separated into nonoverlapping 30-minute runs, and turbulent
flow statistics were computed using the 30-minute averaging period per run. Threshold filters of
50 m s−1 for the horizontal wind components and 10 m s−1 for the vertical component were applied,
and spikes were removed by a five-standard-deviation threshold. Then gaps in the time series were
linearly interpolated when the total gap length was less than 5% (otherwise the 30-minute run was
discarded). The interpolated data set was rotated into the mean wind direction using a standard double
rotation (u3 = u2 = 0 and U �= 0) and the mean value was subtracted to obtain turbulent fluctuations.
Further quality control was conducted using stationary tests and integral turbulence characteristic tests
described elsewhere [50], and only intervals with the best quality metrics were used [51]. For compari-
son purposes, only intervals where both sites had simultaneous high quality measurements were used.
After such post-processing, 65 runs remained for investigating the anisotropy in the ASL and CSL.

IV. RESULTS AND DISCUSSION

To address the study objective, the results are presented as follows: the aij components computed
from Eq. (1) for the ASL and CSL and their dependence on ζ are first presented. Similarities between
anisotropy in componentwise turbulent kinetic energy and integral scales along the x1,x2,x3 are
also featured. Next, attainment of local isotropy at finer scales is explored by comparing measured
D11(r), D22(r), and D33(r) with predictions from K41 scaling and corollary isotropic measures. The
scalewise development of the anisotropic stress tensor [Aij (r)] for the ASL and CSL, as determined
from Eq. (21), is then discussed using AIM and BAM. Predictions from Eq. (24) are displayed
as references to illustrate expected pathways by which Aij (r) approaches its isotropic state with
decreasing r for homogeneous turbulence. Finally, the two scalewise measures F (r) and Cani(r) are
presented as a function of r for CSL and ASL flows across a wide range of ζ values. The focus here
is on two types of scales: (i) the largest r for which local isotropy is attained, and (ii) the smallest
r over which the return to isotropy begins to be efficient. These two scales are then contrasted for
ASL and CSL flows and across ζ values, thereby completing the sought objective.

A. Conventional analysis

Unsurprisingly, the computed aij components exhibit large anisotropy for both ASL and CSL
flows. In particular, the streamwise a11 and the cross-streamwise a22 attain positive values (i.e.,
more energy than isotropic predictions) as evidenced by Figs. 1(a) and 1(b) and negative values for
the vertical a33 [Fig. 1(c)] when compared to the expected Y = 0 designating the isotropic state.
The streamwise and cross-stream components show that the anisotropy for near-neutral conditions
in the CSL is between the vertical and streamwise components. The sum of the two horizontal
components (a11 + a22 = −a33), which accounts for much of the k, is expected to provide a robust
measure of the anisotropy between the horizontal and vertical components. The mean values for a33

differ between CSL and ASL at a 95% confidence level, confirming a significantly larger anisotropy
in the ASL when compared to its CSL counterpart. The analysis here also shows that a33 and a23

are not sensitive to variations in ζ for both ASL and CSL flows. The only component of aij that
exhibits variation with ζ is a13 in the CSL, which has a slope significantly different from zero at a
95% confidence level. The a13 is small in the ASL by comparison to its CSL values. The scatter of
most data points in Fig. 1 can be explained by the measurement accuracy, but in the cases of a11 and
a22 the accuracy alone cannot explain the variation and it is likely that nonstationary wind directions
affect those components. Direct numerical simulations of homogeneous turbulent shear flows showed
more isotropy for weaker shear [52], which agrees with our experiments, where the CSL appears
more isotropic and has weaker shear parameter S∗ compared to its ASL counterpart for near-neutral
conditions. Moreover, the simulation results [52] showed patterns among the components of aij that
are similar to the atmospheric measurements reported in Fig. 1 for a near-neutral ASL. The S∗ here
varied from 35 to 83 compared to their highest, S∗ = 27, where S∗ = Sk2/ε with S = U/(z − d).
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FIG. 1. The measured components of the anisotropy tensor aij are shown as a function of the absolute
value of the stability parameter |ζ | = |(z − d)/L| [(a), (b), (c), and (e)]. Measurements of the ASL (desert) are
red and those of the CSL (forest) are blue. Circles show stable conditions, diamonds are used for near neutral
stratification conditions, and crosses denote unstable conditions. The a33 shown in panel (c) are significantly
larger in the CSL compared to the ASL at a confidence level of 95%. The black dashed line shows the expected
value for isotropic turbulence and the solid blue line in panel (e) shows a linear regression of a33 for the CSL.
The lower right panel (f) shows turbulent kinetic energy k normalized with u∗ and the lower left panel (g) shows
σu3(σu1 + σu2)−1 together with the expectation for near neutral conditions as dashed lines [5]. Note the larger
σu3(σu1 + σu2)−1 for the CSL when compared to the ASL.

Moreover, these simulations do not have a “wall” thereby suppressing any possible wall-blocking
likely to be higher in the ASL than the CSL. As earlier noted, the u2

∗ is larger for the CSL when
compared to the ASL due to the rougher forest cover. While u3u3/u

2
∗ increases with increasing

−ζ , u1u1/u
2
∗ and u2u2/u

2
∗ vary with both −ζ and log10 (z/hBL), where hBL is the boundary layer

height as discussed elsewhere [16,17,53–55] with higher values (and fraction of k) in the ASL when
compared to the CSL. Separate field experiments suggest that hBL above the forest and the shrubland
are comparable [56] (and by design, so are the z values in the CSL and ASL). These findings
explain the lower measured k/u2

∗ in the CSL [Fig. 1(f)] when compared to its ASL counterpart
given the larger u∗ over the forest. While u1u1/u

2
∗, u2u2/u

2
∗, and u3u3/u

2
∗ follow expectations for

near-neutral conditions from a mixing layer analogy [5] in the CSL, these flow statistics were higher
than expected for the ASL (not shown). A plausible explanation for higher than expected values
in the ASL are some topographic variability upwind of the ASL measurement tower. However, the
aforementioned topographic variability did not affect the anisotropy appreciably given that canopy
sublayer experiments (field and laboratory) collected at z/h = 1 yield σu3(σu1 + σu2)−1 = 0.30 (with
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FIG. 2. Normalized length scale Lu3z
−1 (a) and the length scale ratios Lu3L

−1
u1 (b) and Lu3L

−1
u2 (c) are shown

as a function of the absolute value of the stability parameter |ζ | = |(z − d)/L|. Measurements of the ASL
(desert) are red and those of the CSL (forest) are blue. Unstable stratification is shown as crosses, near neutral
as diamonds, and stable as circles. The dashed line in panels (b) and (c) shows Lu3L

−1
u1 = 0.1 reported from

other experiments [57,58].

σui = √
uiui) whereas surface layer experiments yield σu3(σu1 + σu2)−1 = 0.25, to which ASL and

CSL appear to be commensurate for near-neutral conditions [Fig. 1(g)].
To contrast energy anisotropy with eddy size anisotropy along the x1, x2, and x3 directions, the

effective eddy sizes for the ui are determined from the integral time scale Iui and Taylor’s frozen
turbulence hypothesis [42] using

Lui = UIui = U

∫ ∞

0
ρui(τ0)dτ0, (28)

where ρui(τ0) is the ui velocity component autocorrelation function and τ0 is the time lag. Here, Lu3

is presumed to be the most restrictive scale given that u3 is the flow variable most impacted by the
presence of a boundary (porous in the CSL and solid in the ASL). The calculations show that Lu3/z

is on the order of unity for the CSL but higher in the ASL for near-neutral conditions [Fig. 2(a)].
As expected, Lu3/Lu1 [Fig. 2(b)] and Lu3/Lu2 [Fig. 2(c)] are well below unity for both ASL and
CSL flows and do not vary appreciably with ζ . Roughly, Lu1 is about a factor of 10 larger than Lu3

(shown as a dashed line) in agreement with prior CSL [57] and ASL [58] experiments. Interestingly,
the shape of the normalized energy distribution ellipsoid observed in Fig. 1 is qualitatively similar
to the effective eddy sizes but they are not identical. Because Lu3 is the most restrictive eddy size
and partly captures some effects of ζ on elongation or compression of eddy sizes [Fig. 2(a)], the
scalewise analysis is to be reported as r/Lu3 (instead of r/z) for each run. It is also worth noting that
r/Lu3 may be interpreted as normalized time-scale separation given that Taylor’s hypothesis equally
impacts the numerator and denominator. While Taylor’s hypothesis is not expected to be suitable
near roughness elements [59] in the CSL, its distortions become less severe beyond z/h > 2, the
case for the CSL here.

The ensemble-averaged (over ζ ) normalized D11/2u1u1, D22/2u2u2, and D33/2u3u3 approaches
unity at large rL−1

u3 , consistent with expectations from stationarity arguments (Fig. 3). However,
stationarity appears to be attained at smaller rL−1

u3 for the CSL when compared to its ASL counterpart.
The fact that D11/2u1u1 exhibits an approximate logarithmic region at scales larger than inertial but
smaller than scales where dD11(r)/dr ≈ 0 is not surprising for the ASL, and is consistent with
prior theoretical analysis explaining the −1 power law in the longitudinal velocity spectrum at large
scales as well as in laboratory studies, field experiments, and large eddy simulations [55,60–68].
Such a logarithmic transition between inertial and dD11(r)/dr ≈ 0 is much more restricted in scale
separation within the CSL.

At about r/Lu3 = 1/2, all velocity component structure functions follow the r2/3 K41 scaling,
consistent with other ASL experiments [69,70]. However, second-order structure function scaling
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FIG. 3. Ensemble averaged of normalized structure function 1
2 D11u1u1

−1 (left column), 1
2 D22u2u2

−1

(middle column), and 1
2 D33u3u3

−1 (right column) are shown for the ASL (top, red) and CSL (bottom, blue).
The black dotted line is y = 1 and the black dashed line shows the slope r2/3 for Kolmogorov scaling [Eq. (18)].
The error bars show the standard deviation of the ensemble.

laws are only a necessary but not sufficient condition to the attainment of local isotropy. The
componentwise velocity structure function ratios against r/Lu3 demonstrate that anisotropy exists at
fine scales even for r/Lu3 = 1/2 and for both ASL and CSL flows (Fig. 4). However, for r/Lu3 < 0.1,
predictions from local isotropy agree with measurements. The calculations were repeated forD11/D33

and D22/D33 to correct for finite squared turbulent intensity effects using the linear model of Wyn-
gaard and Clifford [43,71]. The results do not deviate appreciably from direct application of Taylor’s
frozen turbulence hypothesis, assuming small turbulent intensity (figure not shown). It is precisely
the nature of this anisotropy that we seek to address using the invariance measures across scales.

B. Invariant analysis

The return-to-isotropy trajectories are shown in BAM for all ensemble members [Figs. 5(a) and
5(b)]. The starting and ending points of the scalewise trajectories are consistent with the conventional
analysis previously discussed: large scales are further away from the isotropic (or 3D) limit for the
ASL when compared to the CSL. The ζ variations also show no significant influence on the starting
position of the points within the BAM [Figs. 5(a) and 5(b)].

The relaxation trajectories towards the isotropic (or 3D) state with decreasing scale r appear to be
shorter for the CSL when compared to the ASL. Trajectories, by and large, show a return to isotropy
by a contraction in the proximity of the 2D-3D limit for near-neutral and unstable ζ . However,
the trajectory for stable conditions is closer to the center of the BAM [Figs. 5(c) and 5(d)]. In all
cases, meandering of trajectories in the BAM with decreasing scale deviates from predictions based
on zero-mean shear or homogeneous turbulence. These deviations partly reflect contributions from
dU/dz that is active on all scales. In the AIM, the trajectories show rough similarities in curvature
to the model for homogeneous turbulence [Eq. (24)] at the same starting position. This agreement
is mainly due to the compressed trajectory representation of AIM near the isotropic limit corner, as
discussed elsewhere [32]. The deviation between modeled and measured trajectories is quantified
as the shortest distance in the BAM for a given r by d(dI2/dI3,nBAM), with nBAM = (xBAM,yBAM)
given by Eq. (12) and dI2/dI3 by Eq. (24). The ensemble average of the deviation is decreasing
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FIG. 4. Local isotropy attained by the ratios D11D
−1
33 (left column) and D22D

−1
33 (right column) for the ASL

(top row, red) and CSL (bottom row, blue). The three lines show one example interval for stable (solid), neutral
(dashed), and unstable (dotted) conditions. The black dashed line shows the expected ratio for locally isotropic
turbulence based on K41.

towards the large scales, because we initialized the model with the measurements at the starting
point of the trajectory, and at small scales where both converge to the isotropic state [Figs. 5(e)
and 5(f)]. In between, the return to isotropy of the Rotta model shows significant deviations from
the measurements, which cannot be explained by the measurement errors. The measurement errors
were computed empirically by generating 2500 realizations of the anisotropy tensor aij from the
accuracy of the covariance, assuming a normal distribution. Each aij was then diagonalized to gain a
distribution of the eigenvalues and subsequently a distribution of nBAM. From this the measurement
error is estimated as the standard deviation of the distance between the mean of nBAM (which is equal
to measurements) and each ensemble member.

An ensemble average of all runs shows at which rL−1
u3 the return to isotropy commences and

terminates using both F and Ciso (Fig. 6). While the F (or AIM) measure suggests near-isotropic
conditions at small scales, the Ciso (or BAM) measure suggests small but sustained anisotropy at
those same small scales. As noted earlier, the AIM compresses the trajectories (and distance) near
isotropic states, whereas BAM does not. Consistent with the previous structure function analysis,
a near local isotropy at small scales rL−1

u3 < 0.5 is attained where as anisotropy exists at larger
scales. The ASL is shown to be more anisotropic at large scales (rL−1

u3 > 100) when compared to
the CSL. Both anisotropy measures reveal three separated regimes: scale independent anisotropy at
large scales where F and Ciso are constantly low but approximately independent of scale (anisotropy
is large), a return-to-isotropy regime in which the flow begins to relax towards isotropy as smaller
scales are approached, and a third regime where scale-independent near-isotropy at small scales is
attained (anisotropy is weak). The upper and lower scales bounding this intermediate regime are
hereafter designated as rani and riso, respectively. They were determined from the scale r where Cani

has reached 90% of maximum isotropy (approaching from large r) in the case of riso and from the
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FIG. 5. The top row shows the trajectories of all 30 minute runs for the ASL (a) and the CSL (b) together
with starting points color coded according to their stability class (black is unstable, dark grey is near neutral, and
light grey is stable). The middle row shows return-to-isotropy trajectories in the BAM for three sample cases
with unstable, neutral, and stable stratification of the ASL (c) and CSL (d) together with model trajectories
[Eq. (24)]. The insets show the same three trajectories in the AIM representation. The bottom row shows the
mean distance between modeled and measured trajectories in BAM, with the standard deviation as error bars,
for the ASL (e) and CSL (f) together with the part of each deviation which can be explained by the measurement
errors (black).

scale r where Cani was within 10% of its lowest value (approaching from small r) in the case of rani.
In the ASL, the return to isotropy is initiated at larger scales (raniL

−1
u3 > 70) when compared to the

CSL (raniL
−1
u3 > 25) and covers a wider scale range. The scales at which local isotropy is roughly

attained (risoL
−1
u3 = 0.5) are comparable for the ASL and CSL.

The experiments above urban canopies suggested that rani varies with an outer length scale
associated with the peak in the air temperature spectrum [26]. A similar analysis was conducted
using the integral length scale of the air temperature time series LuT , and the outcome is featured in
Fig. 7. When analyzing all the individual runs, rani is smaller for stable than for unstable conditions
for the CSL but not the ASL [Fig. 7(a)]. Also, rani has a weak dependency on LuT for the ASL
but not for the CSL [Fig. 7(a)]. In contrast, riso is less sensitive to variations in LuT [Fig. 7(b)],
especially in the ASL (riso ≈ z/2). Normalizing rani and riso with Lu3 removes any LuT dependency
in the ASL [Figs. 7(c) and 7(d)] and the correlation coefficient of LuT and rani decreases from 0.43
to 0.02, and in case of riso it decreases from 0.40 to −0.12 (in the CSL all correlation coefficients are
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FIG. 6. Anisotropy measures F [left column, Eq. (14)] and Cani [right column, Eq. (15)] are shown for
ASL (top row, red) and CSL (bottom rom, blue) as an ensemble average with standard deviation across all ζ to
highlight the role of surface roughness. The black dashed lines show three regimes defined by reaching 90% of
maximum isotropy or 10% of anisotropy.

smaller than 0.14). That is, much of the dependency of rani on LuT in the ASL can be attributed to
variations in Lu3 with −ζ . Furthermore, ensemble averages of rani are significantly different for CSL
and ASL and remain significantly different if normalized with Lu3. The ensemble average of riso is
also significantly different when comparing CSL and ASL flows, but this difference is collapsed if
riso is normalized Lu3. These results are robust even when other methods for determining rani and riso

(e.g., fitting a tangent hyperbolic function) are employed (not shown). In comparison to experiments
above urban canopies [26], values of LuT cover similar ranges in the ASL and CSL. The range rani

covers more than a decade if ASL and CSL results are treated separately (and when excluding the
data point with rani = 5 for the CSL), which is a larger range than observed above urban canopies.
It may be surmised that the return to isotropy depends more on roughness properties and less on
surface heating or cooling for the same L.

The persistence of anisotropy at small scales has been extensively studied and linked to the finite
mean velocity gradient [72,73]. The so-called integral structure function of order n, defined as[

�uk(r)3 + αcr
dU

dz
�uk(r)2

]n/3

, (29)

has been shown to recover measured structure functions in laboratory settings and simulations [72,73]
at small scales, whereαc is a similarity constant. The prevalence ofdU/dz acting on all scales suggests
that anisotropy produced by the mean velocity gradient can persist throughout the inertial subrange
via finite cospectra [74,75]. This argument was recently suggested to explain persistent anisotropy in
the urban surface layer [26]. In terms of a lower boundary condition on the flow, this mean velocity
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(d) at which isotropy is reached are plotted against the temperature length scale LuT . Circles indicate stable,
diamonds near-neutral, and crosses unstable stratification. Blue symbols show the CSL over the forest canopy
and red symbols the ASL over the desert surface.

gradient is linked to the shear stress and thermal stratification by

dU

dz
= φm(ζ )

u∗
κz

. (30)

For near-neutral conditions (i.e., φm(0) = 1) and at a fixed z, increasing u∗ increases dU/dz.
In the case of the CSL, u∗ and dU/dz are expected to be higher than their ASL counterpart if κz is

similar. However, the invariant analysis here suggests that ASL is more anisotropic at fine scales, r <

riso. Hence, shear intensity (or dU/dz) alone cannot be the main cause. The alternative explanation
stems from the fact that σu3/(σu1 + σu2) is larger for the CSL when compared to its ASL counterpart
for similar ζ values. While both ASL and CSL turbulence appear to be isotropic in the plane paralleling
the ground surface, the CSL energy ellipsoid appears to be closer to 3D when compared to its ASL
counterpart. This initial energy configuration state at large scales in the ASL requires that the return
to isotropy transfer more energy to the vertical direction when compared to the CSL.

V. BROADER IMPACTS

The results presented here are pertinent to subgrid-scale turbulence closure schemes in large eddy
simulations. Most models use subgrid-scale stress parametrization based on isotropic eddy-diffusivity
schemes (e.g., PALM [76–78]). Turbulence closure methods accounting for subgrid-scale anisotropy
based on explicit algebraic Reynolds stress models, which utilize the mean strain and rotation rate,
have been developed and successfully tested [79,80]. Our results show that near isotropy can be
attained for fine scales (<5 m) in CSL and ASL flows, but coarser grid resolutions require anisotropic
subgrid modeling. Further, the results here can be utilized to improve or formulate new wall-blocking
models, for example in the description of the mean velocity profile [81], as the data set spans
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atmospheric flows from weak blockage (CSL) to strong blockage (ASL) and covers a wide range
of velocity variances. The aforementioned examples above implicitly or explicitly assume Rotta’s
energy redistribution hypothesis, which is popular in higher-order closure schemes [82] used in
climate and weather forecasting models (e.g., weather research and forecasting model). The analysis
here hints of a need for exploring approaches beyond a linear Rotta scheme. Another path for
improvement is to find a normalization collapsing rani between CSL and ASL, which then could be
utilized in modeling the efficiency of the return to isotropy.

VI. CONCLUSIONS

Scalewise invariant analysis showed that the return to isotropy is initiated at larger scales and
covers a wider range of scales in the ASL when compared to the CSL. This statement holds when
scales (or separation distances) are normalized by the integral length of the vertical velocity. The
two normalized scales at which the return to isotropy becomes active and near isotropy is attained
are insensitive to atmospheric thermal stratification (again when the scales are normalized by the
integral length scale of the vertical velocity). However, the precise trajectory in the BAM towards
isotropy at finer scales is modified by thermal stratification and mean velocity gradient, and does not
follow expectation from homogeneous turbulence. The analysis also reveals that larger scales appear
less anisotropic in the CSL when compared to its ASL counterpart. Both CSL and ASL appear to
be near-planar isotropic at large scales. However, the reduced overall anisotropy in the CSL mainly
originates from σu3/(σu1 + σu2) being larger for CSL when compared to its ASL counterpart. Hence,
CSL turbulence commences its relaxation to isotropy in BAM with reduced scales from a point closer
to the 3D state and along the 2D-3D interface. Because of the significance of the third invariant (in
both ASL and CSL), the classical Rotta return-to-isotropy approach must be amended. The work
here also shows that the return to isotropy depends more on surface roughness properties and less
on surface heating. From a broader perspective, the work here extends prior laboratory (pipe and
wind-tunnel) studies by demonstrating that rougher surfaces (i.e., a forest) tend to make turbulence
more isotropic than their smooth wall or small roughness (i.e., shrubland) counterparts.
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