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Abstract Two ideas regarding the structure of turbulence near a clear air-water interface are used
to derive a waterside gas transfer velocity kL for sparingly and slightly soluble gases. The first is that kL is
proportional to the turnover velocity described by the vertical velocity structure function Dww(r), where r
is separation distance between two points. The second is that the scalar exchange between the air-water
interface and the waterside turbulence can be suitably described by a length scale proportional to the
Batchelor scale lB = 𝜂Sc−1∕2, where Sc is the molecular Schmidt number and 𝜂 is the Kolmogorov microscale
defining the smallest scale of turbulent eddies impacted by fluid viscosity. Using an approximate solution
to the von Kármán-Howarth equation predicting Dww(r) in the inertial and viscous regimes, prior
formulations for kL are recovered including (i) kL =

√
2∕15Sc−1∕2vK , vK is the Kolmogorov velocity defined

by the Reynolds number vK𝜂∕𝜈 = 1 and 𝜈 is the kinematic viscosity of water; (ii) surface divergence
formulations; (iii) kL ∝ Sc−1∕2u∗, where u∗ is the waterside friction velocity; (iv) kL ∝ Sc−1∕2

√
g𝜈∕u∗ for

Keulegan numbers exceeding a threshold needed for long-wave generation, where the proportionality
constant varies with wave age, g is the gravitational acceleration; and (v) kL =

√
2∕15Sc−1∕2(𝜈g𝛽oqo)1∕4 in

free convection, where qo is the surface heat flux and 𝛽o is the thermal expansion of water. The work
demonstrates that the aforementioned kL formulations can be recovered from a single structure function
model derived for locally homogeneous and isotropic turbulence.

Plain Language Summary The problem considered here is a theoretical prediction of mass
transfer across and air-water interface. This interfacial transfer phenomenon is featured prominently in
global carbon balances, methane, nitrous oxides, dimethyl sulfide, and other gases. It is used to assess the
metabolic health of aquatic ecosystems and to determine evasion rates of volatile organic compounds from
lakes, estuaries, reservoirs, and large water treatment plants. The novelty of the approach is to link a bulk
quantity reflecting the efficiency of swirling motions near the air-water interface to the sizes of eddies and
their energetic content responsible for the aforementioned swirling motion. The proposed approach is
shown to recover a number of equations describing gas transport across interfaces that summarize a large
corpus of experiments and simulations.

1. Introduction

The imprint of air flow over interfaces of water, sand, and snow reflects the transfer of momentum, energy, and
matter and has fascinated scientists and general observers alike (Cornish, 1909). The quantitative description
of this imprint, especially in the air-water system, soon followed (Rossby & Montgomery, 1935). More recently,
the consequences of this imprint on gas exchange between an open water body and the atmosphere is receiv-
ing renewed interest given its significance to a plethora of applications. This interfacial transport phenomenon
is featured prominently in global balances of carbon dioxide, methane, nitrous oxides, dimethyl sulfide (DMS),
and other gases (Bastviken et al., 2011; Bolin, 1960; Butman & Raymond, 2011; Cole et al., 2010; Garbe et al.,
2014; Heiskanen et al., 2014; Huotari et al., 2011; Jähne & Haußecker, 1998; Liu et al., 2016; Mammarella et al.,
2015; Rantakari et al., 2015; Raymond et al., 2013; Raymond & Cole, 2001; Upstill-Goddard, 2006; Wanninkhof
et al., 2009; Wüest & Lorke, 2003). Regionally and locally, gas transport across the air-water interface is used
as a water quality index (e.g., dissolved oxygen and aeration rates) and is often needed when determining
evasion rates of volatile pollutants from lakes, estuaries, or even large water treatment plants (Chu & Jirka,
2003; Frost & Upstill-Goddard, 1999; Koopmans & Berg, 2015; Liss et al., 2014; Prata et al., 2017). Given their
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significance to ecosystem metabolism and uncertainty associated with model formulations (Genereux &
Hemond, 1992; Marx et al., 2017; Raymond & Cole, 2001), studies on air-water gas transport in streams
and rivers are now experiencing a renaissance partly driven by the rapid advancements in miniature
eddy-covariance sensors (Berg & Pace, 2017).

Gas fluxes of a slightly or sparingly soluble scalar c across a clear air-water interface are commonly determined
from the waterside bulk equation given as

Fc = kLΔC, (1)

where ΔC = Cb − Cs, Cs is the mean liquid phase saturation concentration at the surface (determined from
Henry’s law and gas-phase concentration), Cb is the mean concentration of the exchanging gas in the bulk
liquid phase, and kL is the liquid phase mass-transfer velocity (labeled as piston velocity in some literature)
describing the turbulent transport efficiency near the interface, the subject here. A large corpus of field and
laboratory experiments agree that (Lamont & Scott, 1970; Lorke & Peeters, 2006; Zappa et al., 2007)

kL = 𝛼Sc−nvK , (2)

where vK = (𝜈𝜖)1∕4 is the Kolmogorov velocity scale formed by the Kolmogorov length 𝜂 = (𝜈3∕𝜖)1∕4 and
time 𝜏k = (𝜈∕𝜖)1∕2 scales so as to ensure a Kolmogorov Reynolds number ReK = 𝜂vK∕𝜈 = 1 (Pope, 2000;
Tennekes & Lumley, 1972), Sc = 𝜈∕Dm is the molecular Schmidt number, 𝜖 is the mean turbulent kinetic energy
(TKE) dissipation rate, 𝜈 is the kinematic viscosity, Dm is the molecular diffusivity of scalar c, and 𝛼 ≈ 0.4 is a
constant determined from experiments (Zappa et al., 2007). Equation (2) appears to hold across a wide range
of marine and coastal systems (Zappa et al., 2007) with 𝛼 = 0.4, though variations reported in the literature
are by no means small (𝛼 = 0.17 − 0.63), as discussed elsewhere (Tokoro et al., 2008; Vachon et al., 2010).
Some studies amended 𝛼 with a log(𝜖)multiplier or a Reynolds number dependency (Wang et al., 2015), while
others suggested that these amendments may be due to changes in exponent n with surface wind conditions
(Esters et al., 2017). When the most efficient waterside momentum transporting eddy scales with Kolmogorov
variables (labeled as microeddies), then dimensional considerations alone recover equation (2) for n = 1∕2
without invoking complex transport schemes (Lorke & Peeters, 2006) such as surface renewal (Lamont & Scott,
1970; Soloviev, 2007).

A number of theories and experiments also suggest that the air-water gas transfer velocity is given by
(Csanady, 1990)

kL = 𝛽Sc−nu∗, (3)

where u∗ is the waterside friction velocity related to the interfacial stress 𝜏o using u2
∗ = 𝜏o∕𝜌, where 𝜌

is the water density. Based on laboratory experiments and comparisons with many data sets, the inferred
𝛽 ≈ 1∕16 − 1∕9. Experimental support for equation (3) across a wide range of Sc and u∗ has been discussed
elsewhere (Hondzo, 1998; Jähne & Haußecker, 1998; Lorke & Peeters, 2006; Prata et al., 2017). Equation (3) has
also been derived from two entirely different perspectives. One assumes that equations (2) and (3) are identical
(Lorke & Peeters, 2006) depending on the choice of how 𝜖 is linked to u∗ (e.g., law-of-the wall), whereas another
assumes equation (3) is linked to moderate wind speed conditions associated with momentum transport by
rollers (or circulation zones) on breaking wavelets (Csanady, 1990; Soloviev & Schlüssel, 1994). The mathemat-
ical form of equation (3) is also consistent with theories for smooth-wall boundary layers albeit with n = 2∕3
and 𝛽 = 0.083 predicted when assuming a unity turbulent Schmidt number (Deacon, 1977). This agreement
opened up the possibility of simple transposition of the law-of-the wall derived for smooth solid boundaries
to air-water interfaces. Reductions from n = 2∕3 to n = 1∕2 (for clear air-water interfaces) are juxtaposition
to finite vertical velocity gradients associated with increased surface roughness or mean squared amplitude
fluctuations of the water interface (Jähne & Haußecker, 1998). As pointed out elsewhere, the analogy between
a solid smooth wall (no slip, n = 2∕3) and a free surface (finite vertical velocity gradient, n = 1∕2) cannot be
entirely correct (Csanady, 1978; Lamont & Scott, 1970). In fact, finite vertical velocity gradients invited the use
of what is termed as surface divergence methods. These methods predict (Banerjee et al., 2004)

kL = csSc−1∕2
√
𝜈Λo, (4)

where cs is a similarity constant and Λo is the surface divergence of the horizontal velocity components
determined from the turbulent vertical velocity w′ by
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Λo =

√(
𝜕w′

𝜕z

)2

, (5)

for an incompressible flow, where 𝜕w′∕𝜕z is to be evaluated at the air-water interface, z is distance from the
interface, overline is time averaging, and primes are turbulent fluctuations.

For high wind speeds, the problem becomes far more complicated and general formulations for kL remain in
scarcity and high demand. In such conditions, long surface wave breaking occurs and suppresses the short
wavelets, thereby altering the kL formulation. A surface renewal theory by Soloviev and Schlüssel (1994) based
on an assumed log-normal renewal times of eddies predicted that

kL = 𝛾Sc−1∕2
(
𝜈g∕u∗

)1∕2
, (6)

where g is the gravitational acceleration and 𝛾 is related to wave age, peak angular frequency of wind waves,
and a critical parameter for the onset of wave breaking (Soloviev, 2007; Zhao & Toba, 2001). The log-normal
renewal time assumption is now supported by laboratory studies, infrared surface temperature measure-
ments, and Direct Numerical Simulations (DNS) studies (Garbe et al., 2004; Kermani & Shen, 2009; Rao et al.,
1971). Interestingly, equation (6) predicts a declining kL with increasing u∗, which reflects the fact that more
of the surface stress is used to support waves instead of waterside turbulence generation. However, if wave
breaking that follows enhances 𝜖 on the waterside, then equation (2) may still provide a realistic estimate of
kL as discussed elsewhere (Kitaigorodskii, 1984). Within the confines of equation (6), the role of bubbles and
wave breaking must overcompensate for such decline with increasing u∗ if kL increases beyond its linear value
given by equation (3) as reported by experiments (Jähne & Haußecker, 1998). Wave breaking leads to a cas-
cade of other events such as bubble-mediated transfer of scalars where Henry’s law must also be amended
when determining Cs. These amendments, which also vary with wind speed, surfactants, and water temper-
ature, have been discussed elsewhere (Memery & Merlivat, 1985; Woolf & Thorpe, 1991) and their effects on
kL are not considered. Notwithstanding these limitations, few field experiments used DMS to explore the
kL dependency on mean wind speed at 10 m above the air-water interface (U10). DMS is not impacted by
bubble-mediated transfer and is thus an ideal tracer for exploring kL in the absence of bubbles at high U10.
Few experiments support the decline of kL for DMS with increasing U10 (Bell et al., 2013, 2017; Huebert et al.,
2004), while others do not offer such strong evidence (Bigdeli et al., 2018). Some laboratory studies suggest
a saturation behavior of kL with u∗ at very high u∗ (Komori et al., 1993; Vlahos & Monahan, 2009).

The goal here is not to propose a new formulation for kL or compare various kL formulations with data. Instead,
a new interpretation rooted in a link between kL and the spectral shape of turbulence is proposed with-
out resorting to surface renewal schemes. This link assumes that kL is a scale-dependent turnover velocity
(instead of a piston velocity) and all the aforementioned formulations reviewed here (including their associ-
ated constants) reflect different scales over which the spectrum is integrated (Katul & Liu, 2017a). Hence, all
the aforementioned kL formulations maybe recovered from an accepted structure function shape describ-
ing turbulence at high Reynolds numbers on the waterside. In essence, the interpretation of kL proposed
here (in the absence of waves or wavelets) is shown to be a hybrid between the original theory proposed by
Lamont and Scott (1970) and the dimensional considerations of Lorke and Peeters (2006). It maintains the
spectral energetic content in eddies originally employed by Lamont and Scott (1970) but without utilizing
surface renewal schemes. However, the effective eddy size over which the energy content is being evaluated
is derived from dimensional considerations analogous to those used by Lorke and Peeters (2006). When small
wavelets or waves are present, the choices of these length scales are determined entirely from plausibility
considerations and ad hoc arguments. Nonetheless, by showing connections between established kL formu-
lations and the structure function for vertical velocity, the work here offers a different perspective about links
between eddy sizes, their energetics, and kL beyond surface renewal theory. Also, it allows for a single expres-
sion to be derived that interpolates between all the aforementioned prior formulations. Last, it is envisaged
that progress in this area can contribute to analogous problems in surface hydrology such as water vapor
transfer from rough surfaces into a turbulent atmosphere as may occur during evaporation from bare soil or
vegetated systems (Brutsaert, 1975; Haghighi & Or, 2013; Katul & Liu, 2017b; Shahraeeni et al., 2012).

2. Theory
2.1. Background and Definitions
For slightly and sparingly soluble gases, the small Dm implies that the resistance to mass transfer in air is negli-
gible compared to its water counterpart (Bolin, 1960). It is well known that when Sc >> 1, scalar transport near
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interfaces is assumed to be conducted by eddies commensurate in size to the Batchelor scale lB = Sc−1∕2
𝜂

(Batchelor, 1959; Hill, 1978; Lorke & Peeters, 2006). The lB is viewed as the smallest length scales of turbulent
tracer fluctuations. This length scale can be derived in multiple ways—but the textbook versions associate
this length scale to controls over a diffusive time scale tm characterizing a diffusive length scale lD =

√
Dmtm.

When Sc >> 1, then water viscosity restricts tm and tm is given by 𝜏k resulting in

lD ∝
√(

𝜈

Sc

)(
𝜈

𝜖

)1∕2
, (7)

thereby recovering lD = lB = Sc−1∕2𝜂. With this background, and based on dimensional considerations alone,
Lorke and Peeters (2006; hereafter referred to as LP06) showed that for Sc>> 1, the viscous sublayer thickness
(𝛿V ∝ 𝜈∕u∗) exceeds that of the molecular diffusive layer of scalar c (𝛿D ∝ Dm∕u∗) and the Batchelor scal-
ing restricts the path length over which scalar transport must occur. Hence, kL ∝ Dm∕min

(
𝛿V , 𝛿D

)
. Because

𝛿V >𝛿D, kL is dominated by concentration differences along 𝛿D and kL ∼ Dm∕𝛿D. This result is virtually identical
to the classical thin-film theory (Fortescue & Pearson, 1967; Lewis & Whitman, 1924). With 𝛿D ∝ lB,

kL ∝
Dm

𝛿D
= 𝜈Sc−1

Sc−1∕2 (𝜈3∕𝜖)1∕4
= Sc−1∕2

𝜈−1𝜈3∕4 (𝜖)−1∕4
, (8)

thereby recovering equation (2). LP06 also provides some arguments about expected sizes of 𝛿D = 2𝜋lB and
𝛿V = 8.6𝜈∕u∗ based on what is known about variations in turbulent statistics (eddy diffusivity) in the viscous
(and buffer) regions of wall-bounded flows.

2.2. Surface Renewal Schemes: Large- and Micro-Eddy Models
In air-water mass-transfer studies, several limitations of classical thin-film theory have been addressed via sur-
face renewal schemes. Surface renewals are viewed as approximations to upwellings of eddies in which water
flows toward the interface and is then deflected parallel to the interface. As these elements deflect by the
air-water surface, flow occurs along the surface leading to a finite 𝜕u∕𝜕x + 𝜕v∕𝜕y and subsequently plunges
back into the body of the water. Here u and v are the velocity components along the longitudinal (or x) and
lateral (or y) directions, respectively. Fresh water elements are then transported very close to the surface so
that mass is only transferred by molecular diffusion at the surface. The assumption of instantaneous water
element transport, often invoked in surface renewal analysis, is hydrodynamically unrealistic but corrections
to it do not alter much gas transfer velocity formulations. Eddies associated with upwellings and contact with
the interface are effective in mass transfer across an interface as shown using conditional sampling methods
(Komori et al., 1990). Near an air-water interface, DNS also reveal a rich turbulent regime where inertial, pres-
sure, and viscous coupling all play a role (Herlina & Wissink, 2014). Likewise, rapidly acquired thermal infrared
images suggest that thermal signatures of the contact durations of eddies with the air-water interface follows
a log-normal distribution in agreement with a number of fully developed turbulence theories (Garbe et al.,
2004). Hence, the main difference between wall-bounded flow and flow near air-water interfaces is the flow
pattern associated with upwelling events close to the surface. In the case of wall-bounded flows, the bound-
ary conditions on this flow are w = 0 and 𝜕w∕𝜕z = 0 resulting in 𝜕u∕𝜕x + 𝜕v∕𝜕y = 0 (no surface divergence).
For those boundary conditions, the viscous sublayer cannot be readily penetrated by eddies. In the case of
air-water interface, w = 0 but 𝜕w∕𝜕z is finite (and large) at the interface. Laboratory experiment measuring
the waterside w(z) at a small distance away from the air-water interface and 𝜕u∕𝜕x + 𝜕v∕𝜕y at the interface
suggest that (Brumley & Jirka, 1987)

w(z) = −
(
𝜕u
𝜕x

+ 𝜕v
𝜕y

)
z=0

z∗, (9)

where z∗ was shown to be commensurate with 𝜂, though by no means this view is widely accepted and larger
eddies have been postulated to impact w(z).

As discussed elsewhere (Katul & Liu, 2017a, 2017b; Komori et al., 1990), surface renewal theory predicts

kL ∝
√

Dm

𝜎t

LI
, (10)

where 𝜎t is a characteristic turbulent velocity and LI is a length scale describing the upwelling eddy sizes
penetrating the viscous sublayer and efficiently exchanging mass with the air-water interface via molecular
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Figure 1. The Kolomogorov microscale 𝜂 and the Batchelor scale lB for
Sc >> 1 below the air-water interface. Microeddies are assumed to be
isotropic of size r moving scalars to and from the interface from regions with
constant concentration Cb (labeled as bulk region) to the surface
characterized by an interface concentration Cs . The turnover velocity is
defined by the magnitude of the relative velocity difference between two
points |Δw′(r)| = |w′(x + r) − w′(x)| = √

Dww(r) separated by r = 2lB as
shown. The kL =

√
Dww(r).

diffusion. Two types of models have been proposed to estimate 𝜎t and
LI: the so-called microeddy approach (Lamont & Scott, 1970) and the
energy-containing eddy approach (Fortescue & Pearson, 1967; Komori
et al., 1990). Unlike wall-bounded surfaces, the air-water interface allow
eddies of various sizes to make contact with the interface for finite dura-
tions (the basis of surface renewal). The problem then is what type of
eddies dictate the values of 𝜎t and LI? In the energy-containing eddy
approach, 𝜎t ∝

√
etke, where etke is the TKE and LI is the integral length

scale of the flow away from the interface. In the microeddy approach, these
velocity and length scales are given by their Kolmogorov values (𝜎t = vK

and LI = 𝜂), thereby recovering equation (2) with n = 1∕2. As a bridge
between the microeddy and energetic-eddy approaches, a Reynolds num-
ber Ret = 𝜎tLI∕𝜈 >> 1 is first defined to ensure a turbulent state at the
macroscopic level near the interface. Next, it is assumed that the bulk TKE
dissipation 𝜖 ∝ 𝜎3

t ∕LI, thereby resulting in 𝜂∕LI ∝ Re−3∕4
t , or LI ∝ Re3∕4

t 𝜂

(Fortescue & Pearson, 1967; Tennekes & Lumley, 1972). Replacing these
estimates in equation (10), the energy-containing eddy approach yields

kL ∝ Re−1∕4
t

[
Sc−1∕2vK

]
. (11)

This result is analogous to equation (2) (i.e., the microeddy approach) but with 𝛼 decreasing as Re−1∕4
t with

increasing Ret . DNS and experimental support (laboratory and field) for this finding are discussed elsewhere
(Herlina & Wissink, 2014; Komori et al., 1990; Wang et al., 2015), at least for moderate Ret . Clearly, in the limit
of very large Ret , kL may become unrealistically small suggestive that 𝛼 must become independent of Ret .
The independence of 𝛼 from Ret is analogous to how the Darcy-Weisbach friction-factor becomes indepen-
dent from the bulk Reynolds number at very high bulk Reynolds numbers in pipe and open channel flows.
A number of studies demonstrated that 𝛼 becomes constant independent of Ret for very large Ret (i.e., con-
sistent with the microeddy approach) but depends on Re−1∕4

t for moderate Ret (Theofanous et al., 1976; i.e.,
consistent with the energetic-eddy approach). Using laboratory experiments and DNS, the crossover between
these two mass-transfer regimes (i.e., energetic eddy to microeddy) was determined to be around Ret ≈ 500
(Herlina & Wissink, 2014; Theofanous et al., 1976). In fact, the DNS results visually reveal large-eddy penetration
up to the interface of near-isotropic eddies originating from the bulk fluid at moderate Ret < 500 and across a
wide range of Sc values. Also, the same DNS and laboratory studies confirm the Sc−1∕2 scaling in equation (11),
at least for clear interfaces. For the microeddy approach, surface tension effects (or the Weber number) are no
longer relevant to kL formulations.

2.3. The Structure Function Approach
Noting that Fc is related to the waterside mean concentration difference between the air-water interface and
the bulk layer at some 𝛿 below the water surface, then Fc = wTOΔC and kL is interpreted as an effective turnover
turbulent velocity |wTO| instead of a piston velocity (Katul & Liu, 2017a) as shown in Figure 1.

The magnitude of this velocity is
√

w2
TO, where w2

TO is the mean squared vertical velocity of eddies of size r = 𝛿

given by

w2
TO = [w′(x + r) − w′(x)]2 = Dww(r), (12)

where w′ is the turbulent vertical velocity as before, x is an arbitrary position, r is separation distance assumed
to represent mean eddy sizes, and Dww(r) is the second-order structure function of the turbulent vertical veloc-
ity. The large Sc assumption implies that as eddies turn fluid elements, the loss of scalar mass by molecular
diffusion from those fluid elements can be ignored over the smallest time scales commensurate with 𝜏K . The
inference of w2

TO may be achieved via the scale-wise integration of the spectrum of w′ (Eww(k), k is wavenum-
ber). However, the physical space or structure function representation for |wTO| is preferred for two reasons: (1)
The structure function already integrates spectral energy content across scales—as given by the approximate
expression (Davidson, 2015; Katul et al., 2016)

r
dDww(r)

dr
∼ kEww(k), (13)
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and (2) at r = 0 and as r → ∞, the bounds on the structure function are unambiguous and given by

Dww(0) = 0 and Dww(∞) → 2𝜎2
w , where 𝜎w =

√
w′2 is the vertical velocity standard deviation. For Eww(k),

how those bounds are approached is more problematic. In the case of nonflat water surfaces associated
with equations (6) and (3), the choice tm must be viewed as ad hoc but plausible. The simplest model for
Dww(r) is the Kolmogorov inertial subrange scaling (or K41) for locally homogeneous and isotropic turbulence
(Kolmogorov, 1941) adjusted by a viscous cutoff given by

Dww(r)
Co(𝜖r)2∕3

= 1 − 1
𝜁

DawF(𝜁 ), (14)

where Co is the Kolmogorov constant, 𝜁 = 𝜃(r∕𝜂)2∕3, 𝜃 = (10Co)−1∕2, and the Dawson function is given by

DawF(𝜁 ) = exp(−𝜁2)∫
𝜁

0
exp(p2)dp ≈ 𝜁 − 2

3
𝜁3 + · · · . (15)

This expression is an approximate solution to the von Kármán-Howarth equation (von Kármán & Howarth,
1938) derived elsewhere (Katul et al., 2015). When this expression is converted to the spectral domain, it
recovers the spectral bottleneck reported at the crossover from inertial to dissipation (Katul et al., 2015). This
bottleneck is commonly identified by a bump when the compensated spectrum k5∕3Eww(k) is plotted against
k in the vicinity of k𝜂 ≈ 0.1 and has been the subject of active research (Davidson, 2015; Dobler et al., 2003;
Donzis & Sreenivasan, 2010; Frisch et al., 2013, 2008; Herring et al., 1982; Hill, 1978; Katul et al., 2015; Meyers &
Meneveau, 2008). The assumed spectrum by Lamont and Scott (1970) exhibits an inertial subrange adjusted
with a power-law viscous cutoff based on the Kovasznay spectrum. Such a spectrum does not exhibit any
bottlenecks, which is not consistent with DNS (Meyers & Meneveau, 2008) or high Reynolds number labora-
tory experiments (Saddoughi & Veeravalli, 1994). As earlier noted, kL =

√
Dww(r) and Dww(r) depend on the

scale-wise integrated spectrum in equation (13); hence, not all spectral features are required to reproduce
Dww(r) from Eww(k). That is, despite the shortcoming of the spectral shape for Eww(k) used by Lamont and
Scott (1970), the outcome for kL may be reasonably insensitive to the presence of the aforementioned bottle-
neck. For r∕𝜂 >> 10, Dww(r) = Co(𝜖r)2∕3 and the effects of viscous cutoff on Dww(r) can be ignored. However,
the majority of conditions to be considered here deal with cases where the viscous effects on Dww(r) are sig-
nificant (at least in the microeddy dominated Ret). Setting r = 2(Dmtm)1∕2 = 2(𝜈Sc−1tm)1∕2 (instead of lB) and
considering only the two-term expansion of the Dawson function yields

Dww(r) = w2
TO = 2

15
Sc−1(𝜖tm), (16)

where the factor 2 is discussed in Appendix A as well as further rationale for selecting the Batchelor scale for
r (in the microeddy regime where Ret >> 500). The linearity in 𝜖tm here bares resemblance to the Lagrangian
structure function in the inertial subrange (Monin & Yaglom, 1975; Ouellette et al., 2006; Yeung, 2002) but with
two exceptions: (1) the constant 2∕15 is independent of the Kolmogorov constant, and (2) the dependency
of k2

L on Sc−1 arises because scalar molecular diffusion dictates the effective eddy sizes transporting scalar c.
The derivation of equation (16) also makes no specific assumption about the boundary conditions (e.g., the
law-of-the wall). In fact, the structure function shape assumed here applies universally to all locally homo-
geneous and isotropic turbulence, which is appropriate for eddy sizes much smaller than the integral length
scale of the flow (i.e., microeddies). The indirect effect of such boundary conditions will be incorporated into
models of 𝜖 and estimates of tm.

The predicted kL ∼ Sc−1∕2 is consistent with all prior surface renewal theories and surface divergence argu-

ments. In essence, assuming a kL =
√

Dww(r) implies a finite |dw′∕dz| ∼ √
[w′(z + r) − w′(z)]2∕r at r ∼ lB near

the interface (z → 0). It has been shown theoretically (Csanady, 1990; Hasse, 1980; Lamont & Scott, 1970),
experimentally (Hondzo, 1998; Jähne & Haußecker, 1998), and using DNS (Fredriksson et al., 2016; Takagaki
et al., 2016) that a finite dw∕dz at the interface is responsible for kL ∼ Sc−1∕2, whereas a dw∕dz = 0 invariably
leads to a kL ∼ Sc−2∕3. The kL ∼ Sc−1∕2 is sufficiently prevalent for clear air-water interfaces that when relating
kL across different gases or conditions (e.g., Sc = 600) or when inferring kL from surface temperature measure-
ments, conventional practice is to set n = 1∕2 not 2∕3 (Asher et al., 2004; Csanady, 1990; Jähne & Haußecker,
1998). An obvious critique here that also applies to surface renewal, eddy penetration, and surface divergence
theories (Csanady, 1990) is the absence of a rigorous link between molecular diffusion at the water surface
and eddy transport below the water surface. The structure function approach simply packs them into lB.
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Notwithstanding this critique, it is shown next that the multiple formulations for kL reviewed in section 1 can
be recovered with appropriate choices of tm and models for 𝜖 where needed (instead of 𝜎t and LI in the surface
renewal formation of equation (10). The simplest model for 𝜖 may be derived from an idealized stationary and
planar-homogeneous TKE budget with no mean vertical velocity where production and dissipation rates of
TKE are in balance. For this idealized state,

𝜖 = −u′w′ dU
dz

+ 𝛽ogqo = u2
∗

dU
dz

(
1 − Rif

)
; Rif =

𝛽ogqo

u′w′(dU∕dz)
; u2

∗ = −u′w′ =
𝜏o

𝜌
, (17)

where dU∕dz is the waterside mean velocity gradient, 𝛽o is the thermal expansion coefficient of water that
varies with absolute water temperature T , Rif is a flux Richardson number, and qo is the surface kinematic ver-
tical heat flux (positive upward) assumed to be the main mechanism responsible for buoyancy generation
or destruction of TKE (i.e., salinity effects or air entrainment on the water density gradients are ignored). Sta-
ble and unstable stratification occur when qo < 0 (downward heat flux, Rif > 0) and qo > 0 (upward heat flux,
Rif < 0), respectively. The two generic terms (mechanical production and buoyant production/dissipation)
impacting 𝜖 appear to be sufficient to recover a wide range of field conditions as discussed elsewhere
(MacIntyre et al., 2010; Tedford et al., 2014). In stable stratification, an 𝜖 > 0 (i.e., turbulence is still active)
requires 0 < Rif < 1, though a maximum value of about Rif ,max = 0.2 − 0.25 has been derived that
ensures well-developed turbulence and K41 scaling to hold (Katul et al., 2014; Li et al., 2015). However, the
Rif ,max = 0.2−0.25 is not connected with laminarization of the flow (Galperin et al., 2007; Grachev et al., 2013;
Li et al., 2016; Zilitinkevich et al., 2008). The qo may be inferred as a residual of the air-side energy balance con-
siderations. It is the outcome of an imbalance between the net long-wave radiation at the interface and the
sum of sensible and latent heat fluxes into the atmosphere. The effects of shortwave radiation are ignored if
its attenuation in water over a small distance ∼ 2lB is small. In what follows, it is assumed that |Rif | << 1 for
the estimation of 𝜖 and dU∕dz unless stated otherwise. This assumption is mainly employed for comparisons
with laboratory studies and published expressions in nonstratified conditions. The expected effects of Rif on
kL are discussed separately. It is worth noting that DNS and numerous experiments on smooth-wall boundary
layers (with |Rif | << 1) suggest that TKE production and dissipation near the wall are not in balance and pro-
duction may exceed dissipation by a factor of 1.7 (McColl et al., 2016; Pope, 2000). This imbalance has obvious
consequences on equation (17) but not appreciably on kL. A kL ∼ 𝜖1∕4 means that a factor of 1.7 in dissipation
rate overestimate from TKE production translates to a factor of 1.14 adjustment to kL. Before linking models
of kL with u∗, the case where kL varies with 𝜖 only is first considered.

2.4. Recovering kL = 𝜶Sc−1∕2 (𝝂𝝐)1∕4 (Abstract, i and v)
This kL formulation is directly recovered when setting tm = 𝜏K . That is,

kL = |wTO| = √
2

15
Sc−1∕2

√[
𝜖

(
𝜈

𝜖

)1∕2
]
=
√

2
15

Sc−1∕2 (𝜈𝜖)1∕4 . (18)

The finding that kL ∼ Sc−1∕2 (𝜈𝜖)1∕4 has been discussed elsewhere (Katul & Liu, 2017a). However, the analysis
here goes further by proposing 𝛼 =

√
2∕15 = 0.37, which is reasonably close to the value 𝛼 = 0.42 reported

by Zappa et al. (2007) and, more recently, by Esters et al. (2017) for open ocean when setting n = 1∕2. Another
multisite study reported a 0.39 < 𝛼 < 0.43 (Vachon et al., 2010) and noted the sensitivity of their inferred 𝛼

to the method and depth used when estimating 𝜖. Also, the predicted 𝛼 here agrees with recent DNS analysis
(Fredriksson et al., 2016) estimating an 𝛼 = 0.39 for the free slip case at the air-water interface. The original
work of Lamont and Scott (1970) also reported an 𝛼 = 0.4. Kitaigorodskii (1984) derived equation (18) for
temperature (without the constant

√
2∕15) and further proposed that it is applicable for wavy surfaces expe-

riencing wave breaking. The wave-breaking component primarily impacts 𝜖, not the gas transfer law for kL, a
point to be discussed later on.

As a bridge to the energetic-eddy hypothesis for moderate Ret , it is worth noting that equation (16) can
directly recover the 𝛼 dependency on Ret . The ratio of the turnover time scale of large eddies (=LI∕𝜎t) to
microeddies (=𝜏K ) is ∼ Re1∕2

t (Tennekes & Lumley, 1972). Setting tm = 𝜏K Re1∕2
t (i.e., large-eddy formulation)

instead of tm = 𝜏K (microeddy formulation) yields kL ∼ S−1∕2
c

√
𝜖𝜏K Re1∕2

t . That is, kL from a microeddy formu-

lation is reduced below the kL arising from energetic-eddy considerations by a factor of Re1∕4
t . The subunity

dependence on Ret by kL means that when Ret increases from 100 to 10,000, alterations in kL are about a factor
of 3.
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In the limit of large −Rif (i.e., approaching free convection limit), the above expression yields

kL =
√

2
15

Sc−1∕2
(
𝜈g𝛽oqo

)1∕4
, (19)

which can be expressed in dimensionless numbers as

kL =
√

2
15

Sc−1∕2Pr1∕2Ra1∕4 𝜈

hc
, (20)

where Pr = 𝜈∕𝛼T is the molecular Prandtl number, 𝛼T is the molecular diffusivity of heat in water, and hc is the
thickness of the convective layer derived from a constant qo ∝ ΔT∕hc, where ΔT is the temperature differ-
ence between the surface and the waterside well-mixed layer, and Ra = (h3

c )(g𝛽o)(ΔT)∕(𝜈𝛼T ) is the Rayleigh
number. Equation (19) agrees with predictions from a surface renewal model (Soloviev & Schlüssel, 1994) that
assumes the mean renewal time is proportional to 𝜈(𝛼T gqo)−1∕2 (Foster, 1971). Moreover, equation (19) is in
agreement with DNS runs (Fredriksson et al., 2016) that reported an expression, given by

kL = 0.39Sc−1∕2
(
𝜈𝛽ogqo

)1∕4
, (21)

that fits their free convective runs.

2.5. Recovering the Surface Divergence Formulation (Abstract, ii)
Recovering equation (4) from (18) can be readily achieved for isotropic turbulence when noting that (Tennekes
& Lumley, 1972)

𝜖 = 15𝜈
(
𝜕w′

𝜕z

)2

. (22)

Inserting equation (22) into (18) leads to

kL =
√

2

151∕4
Sc−1∕2

√
𝜈Λo, (23)

which is identical to equation (4) when cs =
√

2∕(151∕4) ≈ 0.7. This estimate is in acceptable agreement with
the recent DNS studies reported by Fredriksson et al. (2016), where cs = 0.57 was determined from fitting to
DNS using surface state variables. It also agrees with estimates by Ledwell (1984) who reported cs = 0.64 and
by McCready et al. (1986) who reported cs = 0.71.

In what follows, the kL =
[

Dww(r)
]1∕2

interpretation is still employed. However, the explanation of
√

Sc−1(𝜖tm)
must be expanded. From dimensional considerations alone, this quantity

√
Sc−1𝜖tm is simply the energy con-

tent in eddies with characteristic durations tm acting on the mean scalar concentration difference ΔC when
supplied by a constant turbulent energy rate given by 𝜖. Hence, tm may now be impacted by eddies operating
on time scales much larger than 𝜏K . Because the canonical form of kL does not change under those conditions
(i.e., ∝

√
Sc−1(𝜖tm)), the factor 2∕15 is retained and proportionality constants are determined relative to this

original form so as to facilitate an interpolation scheme between all the aforementioned formulations listed
in the abstract (via tm and 𝜖).

2.6. Recovering kL = 𝜷Sc−1∕2u∗ (Abstract, iii)
The consistency between equation (16) and the analysis in Csanady (1990) is now considered. The work by
Csanady (1990) suggest that for moderate wind speeds, the intense momentum flux exchange is caused by
viscous surface stress variations associated with rollers (i.e., circulation zones) on breaking wavelets. The vor-
tical motion is assumed inviscid and spawned from a viscous boundary layer (meaning that its initial surface
vorticity scales with u∗∕𝜈 and is not altered appreciably in time) on the upwind side of the wavelet. The circu-
lation time around the roller then scales with 𝜈∕(u2

∗). It follows that tm = Cm𝜈∕u2
∗ instead of 𝜏k , where Cm is a

similarity constant. A naive argument would suggest that

kL = |wTO| = √
2

15
Sc−1∕2

(
𝜖Cm

𝜈

u2
∗

)1∕2

. (24)
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The evaluation of 𝜖 must now be conducted at some distance from a flat interface to reflect the position of
wavelets. When setting 𝜖 = u3

∗∕(𝛿V ) (Brutsaert, 1965) and 𝛿V ∝ 𝜈∕u∗ (Lorke & Peeters, 2006; i.e., the expected
thickness of the viscous layer for momentum not scalars is 𝛿V ≈ 10𝜈∕u∗),

kL = |wTO| = √
2

15
Sc−1∕2

(
u3
∗

10𝜈u−1
∗

Cm
𝜈

u2
∗

)1∕2

. (25)

That is,

kL = |wTO| =
√

2
15

Cm

10
Sc−1∕2u∗. (26)

Field experiments reporting 𝜖 profiles below a nonflat water surface suggest some independence of z as the
water surface is approached (Wang et al., 2015). Based on the model of Soloviev and Schlüssel (1994), we
estimated a Cm = 0.4 resulting in a 𝛽 = 0.073. This 𝛽 value is smaller than the one estimated by LP06 (𝛽 =
1∕9 = 0.11) from the law-of-the wall over a smooth surface but is in better agreement with the empirical
fit to many data sets reported by Jähne and Haußecker (1998; 𝛽 = 1∕16 = 0.065) and others (Munnich &
Flothmann, 1975). In fact,

kL =
1

16
Sc−1∕2u∗ (27)

was used to estimate the kL component in the absence of wave-breaking in many field studies focused on
the effects of wave breaking on kL (Shuiqing & Dongliang, 2016). The arguments leading to equation (26) are
indeed naive for two reasons: (1) the r = 2(Dmtm)1∕2 = 2(𝜈Sc−1tm)1∕2 are based on scalar transport into a fluid
parcel at a flat interface being entirely driven by molecular diffusion with viscosity restricting the diffusion time
scale (i.e., momentum transporting eddies are commensurate to 𝜂), and (2) the evaluation of 𝜖 at 𝛿V (instead
of distance r from the interface) is within the viscous boundary layer and is assumed to represent the overall
bulk dissipation rate in this entire region (i.e., variation of 𝜖 with z from the interface are not too significant
for quantities that vary as 𝜖1∕4 such as kL). Defining a Reynolds number ReV = u∗𝛿V∕𝜈, then 𝜂∕𝛿V = Re−3∕4

V .
For 𝛿V = 10𝜈∕u∗, 𝜂∕𝛿V ≈ (10)−3∕4 ≈ 0.2 or 𝛿V ≈ 5𝜂, consistent with the viscous boundary layer thickness.
Moreover, the structure function r ∼ Sc−1∕2𝛿V ∼ 5Sc−1∕2𝜂 remains well below the crossover from inertial to
viscous scales for Sc >> 1 (i.e., the assumed structure function shape is correct).

It is instructive to compare this formulation with a case where tm = Cwu∗∕g (Csanady, 2001) and 𝜖 = u3
∗∕(𝜅zo)

(Brutsaert, 1965), with 𝜅 = 0.4 being the von Kármán constant and zo is the momentum roughness length.
In the absence of wave breaking, the momentum roughness length may be estimated by zo = awu2

∗g−1

(Charnock, 1955), which can be used in the determination of the waterside 𝜖 to yield

kL = |wTO| = √
2

15
Sc−1∕2

(
u3
∗

𝜅awu2
∗g−1

Cw

u∗

g

)1∕2

. (28)

A number of reviews have already pointed out that Charnock’s equation does not hold for calm conditions
or extreme high winds with wave breaking (Wüest & Lorke, 2003). Hence, within the confines of Charnock’s
equation, kL reduces to

kL = |wTO| =
√

2
15

Cw

𝜅aw
Sc−1∕2u∗. (29)

This result is analogous to equation (26). The value of 𝛽 is further explored. With Cw ≈ 0.18 × Cm (Soloviev
& Schlüssel, 1994) and a waterside aw = 0.011 × (𝜌∕𝜌a) yields a 𝛽 = 0.03, which is a factor 2 smaller than
𝛽 = 0.073 derived from arguments by Csanady (1990). Here the air-side Charnock constant (=0.011) is con-
verted to its waterside counterpart assuming continuity of the dynamic surface stress (𝜌au2

∗|a = 𝜌u2
∗) where

𝜌a and u∗|a are the air-side density and friction velocity. This continuity is considered next in the presence of
waves and wave breaking at large wind speeds. However, the interpretation of kL ∝

√
Sc−1(𝜖tm) must now be

viewed strictly as an outcome of dimensional considerations as (1) tm deviates appreciably from 𝜏K and (2) the
uncertainty in 𝜖 and u∗ determination are large. Nonetheless, this consideration does permit a unified model
for kL that spans all the expressions listed in the abstract. This is the main reason this line of inquiry is being
pursuit (while mindful of all the model limitations and extrapolations at this stage).
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2.7. Recovering kL = 𝜸Sc−1∕2(g𝝂∕u∗)1∕2 (Abstract, iv)
When surface long waves formed by large wind speeds break down, the surface stress 𝜏o produced by the
wind must be reduced to accommodate the energy carried by waves and the energy used to produce water-
side turbulence as related to the tangential stress 𝜏t . This partitioning is achieved by using the Keulegan
number Ke = u3

∗∕(g𝜈) so that

𝜏t =
𝜏o

1 + Ke∕Kec
, (30)

where Kec ≈ 0.18 is a critical Keulegan number that determines the crossover from wavelet- to long-wave
breaking (Csanady, 2001; Soloviev & Schlüssel, 1994; Soloviev, 2007). Assuming that the waterside 𝜖 =
(𝜏t∕𝜌)u∗∕(𝜅zo) and repeating the above analysis with tm = Cwu∗∕g yields

kL = |wTO| =
√

2
15

Cw

𝜅aw
Sc−1∕2 u∗√

1 + Ke∕Kec

. (31)

When Ke << Kec, then equation (29) is recovered. However, for Ke>> Kec (long-wave breaking), then
equation (31) becomes

kL = |wTO| =
√

2
15

KecCw

𝜅aw
Sc−1∕2

√
g𝜈
u∗

, (32)

which is identical to equation (6) with 𝛾 = 0.03Kec
1∕2. The connection between Ke and the critical number

for wind-wave breaking is now highlighted using arguments similar to Soloviev (2007). As discussed by Zhao
and Toba (2001), a dimensionless number RB empirically characterizing the onset of wind-wave breaking is

RB =
u2
∗|a

𝜈a𝜔p
= 1000, (33)

where 𝜈a is the air viscosity, 𝜔p = g∕(Awu∗|a) is the peak angular frequency of wind waves, and Aw is the wave
age (defined as wave speed normalized by u∗|a). This threshold RB and𝜔p have received significant theoretical
attention and experimental support (Melville & Rapp, 1985; Shuiqing & Dongliang, 2016; Zhao et al., 2003).
Specifying a critical Kec = (u∗|c)3∕(g𝜈) is a kin to setting a threshold RB for a given Aw , where u∗|c is the critical
waterside friction velocity responsible for the formation of long surface waves. Starting with the definition of
RB, the following expression can be derived:

RB =
(
𝜌w

𝜌a

)3∕2 (
𝜈

𝜈a

)
AwKe, (34)

Interestingly, for a threshold RB = 1000 and Kec = 0.18 independently derived by Soloviev and Schlüssel
(1994), an Aw = 3.25 may be inferred. This wave age corresponds to the early stages of surface long-wave
development (Aw ≈ 4) as discussed elsewhere (Csanady, 2001). As earlier noted, the arguments leading to
equation (6) miss the enhanced dissipation rate due to wave breaking, which was not explicitly considered
by Soloviev and Schlüssel (1994). However, the point here is that when forcing equation (16) with constraints
similar to those used in surface renewal theories for long surface waves, their main kL predictions (Soloviev &
Schlüssel, 1994) can be recovered from the structure function model proposed here.

2.8. A unified model for Ke∕Kec < 1
Combining all the aforementioned estimates of 𝜖 and tm, a single model for kL that accommodates ther-
mal stratification, wavelets and waves can be derived. Thermal stratification (i.e., Rif ) is introduced by 𝜖 in
equation (17). The Ke is introduced by considering the mechanical production term in equation (17) assum-
ing only the turbulent stress (not the mean velocity gradient) is modified by equation (30). This combination
of assumptions can be expressed in a Csanady-form as

kL =
√

2
15

[√
1 − Rif

1 + Ke∕Kec

(dU
dz

tm

)]
Sc−1∕2u∗. (35)

KATUL ET AL. AIR-WATER GAS TRANSFER 10



Water Resources Research 10.1029/2018WR022731

Here dU∕dz is the mean vorticity and tm is an effective turnover time scale. If the effect of thermal stratification
on dU∕dz is ignored for simplicity, then dU∕dz = u∗∕𝛿 and

kL =
√

2
15

[√
1 − Rif

1 + Ke∕Kec
Ac

]
Sc−1∕2u∗, (36)

and where Ac = u∗tm∕𝛿 is a constant when Ke∕Kec < 1. This condition is analogous to the modified turbulent
interface law proposed by Csanady (1978). When Ke∕Kec < 1, then 𝛿 = 10𝜈∕u∗ (thickness of the viscous
sublayer) and tm = Cm𝜈∕u2

∗ so that Ac = u∗tm∕𝛿 = Cm∕10 (with Cm = 0.4). That is, the presence of wavelets
do not disturb appreciably 𝛿 from its viscous-sublayer estimate.

When Ke∕Kec > 1, as may be expected for very high wind speeds, then long waves form and 𝛿 now scales with
wave properties such as wave age. In the naive case of a wave height scaling as 𝛿 = a′u2

∗∕g and tm = Cwu∗∕g,
where Cw = KecCm = 0.18×0.4. Again, Ac = u∗tm∕𝛿 is a constant that now varies with wave age or the constant
a′ (i.e., u∗tm∕𝛿 = Cw∕a′ is constant). This unified formulation recovers the comprehensive surface renewal
model of Soloviev and Schlüssel (1994) with the aforementioned caveats of decline in kL with increasing u∗ for
Ke∕Kec > 1. None of the experiments support a decline in kL for such conditions (Ho et al., 2006; Wanninkhof
et al., 2009). For such conditions, bubble transport becomes a significant contributor to kL and is not consid-
ered here. Renewal formulations correcting for the role of bubbles assume that kL is a linear superposition of a
hydrodynamic term (i.e., analogous to predictions from equation (36) and a bubble transport term that is sep-
arately modeled as proposed elsewhere(Soloviev & Schlüssel, 1994). The hydrodynamic contributions to kL by
such surface renewal schemes exhibit a decline with increased mean wind speed at very large wind speeds.

3. Model Limitation

The limitations of the approach are now reviewed. The work here only focused on clear water surfaces with
no surfactants. Surfactants introduce finite interfacial stresses at the air-water interface that then create a
highly dissipative viscous layer (i.e., the air-water interface begins to resemble a solid wall in the limit of high
viscous damping). As such, surfactants are expected to retard gas exchange significantly across the air-water
interface. Notwithstanding this complication, a number of studies suggest that the effects of surfactants can
be accommodated by varying the exponent n in kL ∝ Sc−n as discussed elsewhere (McKenna & McGillis, 2004).
Notably, it was shown that

n ≈ 2
3
− 1

6
exp (−2Λ) , (37)

whereΛ is the ratio of the Marangoni stress (related to surfactant concentration) to a virtual viscous stress due
to a rigid wall. That is,Λprovides a dimensionless number that assess to what degree the surface resembles an
immobile boundary. For Λ = 0 (clean surface), n = 1∕2 (as predicted by surface renewal and structure func-
tion approaches). However, as Λ → 1 (Marangoni stress is comparable to the viscous stress in wall-bounded
flows with 𝜕w∕𝜕z → 0), n → 2∕3, which is the canonical value for wall-bounded flow; Csanady, 2001; Deacon,
1977. Another limitation is that the formulations here did not consider bubble contributions to kL, which are
expected to be significant for large wind speed and long-wave conditions.

The approach is entirely anchored to the von Kármán-Howarth equation describing Dww(r). This equation
and approximate solutions to it are based on locally homogeneous and isotropic turbulence. This assump-
tion is clearly violated near the air-water interface at large scales (r∕𝜂 >> 1), though it may be reasonable for
small eddy sizes (r ≈ 2lB). Another limitation is the absence of a rigorous link between molecular diffusion
at the water surface and eddy transport just below the water surface. The structure function approach here
packs them into lB or their effect on tm. This scaling appears reasonable when Sc >> 1, as discussed elsewhere
(Lorke & Peeters, 2006). However, finite Dww(r)∕r2 as r ∼ lB implies that 𝜕w′∕𝜕z must be finite near the inter-
face. A consequence of a finite 𝜕w′∕𝜕z is that the approach must lead to kL ∼ Sc−1∕2 and cannot predict other
scaling exponents (e.g., kL ∼ Sc−2∕3). At the most generic level, the structure function approach provides a
link between kL, 𝜖, and a diffusion time tm (i.e., kL ∝ (𝜖tm)1∕2). To recover prior formulations, choices for tm

and models for 𝜖 are needed and those choices also introduce their own limitations. The simplest model for
𝜖 may be derived from an idealized stationary and planar-homogeneous TKE budget with no mean vertical
velocity and where production and dissipation rates of TKE are in balance. This assumption, while common
to many air-sea gas exchange studies, misses important nonlocal TKE transport mechanisms associated with
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Figure 2. Summary of assumptions about tm and 𝜖 used to arrive at equations (i)–(iv) presented in the abstract. The
main term is derived from approximations to the von Kármán-Howarth equation that accounts for a balance between
energy transfer across scales, vortex stretching and viscous diffusion. Expressions for tm >𝜏K must be viewed as ad hoc
but plausible. Dimensional considerations alone would suggest that kL ∝

√
𝜖tm, where tm may be interpreted as

turnover time.

turbulence and mean advective terms. These mechanisms result in 𝜖 being underestimated when inferred
from production and buoyancy terms alone. The fact that kL ∼ 𝜖1∕4 also means that a factor of 2 adjustments
to inferred 𝜖 translates to only a factor of 1.18 adjustment to kL. The choices made about tm have been dis-
cussed at length for almost flat surfaces and small waves. For almost flat surfaces, the choice tm = 𝜏K (i.e.,
the Kolmogorov time scale) recovers prior results with the added foresight for the associated similarity con-
stants. For the energetic-eddy hypothesis, the tm = Re1∕2

t 𝜏K also recovers the 𝛼 dependency on Reynolds
numbers for Ret < 500 supported by DNS and experiments. For wavy surfaces, the results derived here must
be viewed with caution given that tm may be much larger than 𝜏K and other constraints on eddy sizes beyond
r = 2(Dmtm)1∕2 must be factored in. When extrapolating to such wavy surfaces, the quantity (𝜖tm)1∕2 was
broadly interpreted as energy content in eddies of turnover duration tm supplied by an energy rate 𝜖. The
consistency between this outcome and prior formulations derived from detailed surface renewal schemes
or other dynamical considerations (Csanady, 1990) certainly warrants further inquiry, a topic best left for
future work.

4. Conclusion

The work here shows how multiple kL expressions can be derived from a single expression (i.e., equation (16).
This equation is derived using the shape of the vertical velocity structure function for locally homoge-
neous and isotropic turbulence near the air-water interface. It shows that all five kL expressions listed in the
abstract are recovered by choosing an appropriate diffusion time scale and estimates of the TKE dissipa-
tion rate as summarized in Figure 2. In particular, when the diffusion time scale is set to the Kolmogorov
time scale, kL =

√
2∕15Sc−1∕2(𝜈𝜖)1∕4. In the presence of wavelets, the diffusion time tm = Cm𝜈∕u2

∗ and
kL =

√
2∕15Cm∕10Sc−1∕2u∗, where Cm = 0.4 was determined from independent experiments. In the pres-

ence of long waves and when tm scales with u∗∕g as expected from Charnock’s equation, kL ∝ Sc−1∕2
√

g𝜈∕u∗.
The latter condition further requires a Keulegan number exceeding a critical value of 0.18 to ensure the gen-
eration of long surface waves. It is noted that while these results agree with prior surface renewal theories
(Soloviev, 2007; Soloviev & Schlüssel, 1994), they emerge from the assumed shape of the vertical velocity struc-
ture function. Last, the effect of buoyancy is explicitly included and the limits associated with free convection
recovered.

Appendix A: Linkage Between Eddy Size and the Batchelor Scale

The rational for selecting eddy size r ≈ 2lB is presented, where lB =
√

Dm𝜏K is the Batchelor scale, 𝜏K is
the Kolmogorov microscale representing the turnover time of this eddy, and Dm is the molecular diffusion
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coefficient. For this effective eddy of size r to allow efficient mass exchange between the air-water interface
and the bulk region, its size must span the thickness of the diffusive layer 𝛿D (i.e., r ≈ 𝛿D). Dimensional analysis
presented in section 2 already suggested that 𝛿D ∝

√
Dm𝜏K or 𝛿D ≈ r ∝ lB. The premise here is that within the

diffusive layer, mass transport over a turnover time period 𝜏K is primarily dominated by molecular diffusion.
Dimensional analysis alone cannot provide the value of the proportionality constant. To do so requires an
estimate of 𝛿D by other means such as the diffusion equation applied within the diffusive layer. The diffusive
layer is bounded by the air-water interface characterized by concentration Cs and a bulk region characterized
by concentration Cb. Mass transport within the diffusive layer is governed by

𝜕C
𝜕t

= Dm
𝜕2C
𝜕z2

, (A1)

where t is time and z is depth from the air-water interface. This equation is subject to two boundary conditions:

C(t, 0) = Cs;C(t, z → ∞) = Cb. (A2)

Using the Boltzmann transform

𝜉 = z

2
√

Dmt
, (A3)

reduces the diffusion equation into a second-order ordinary differential equation given by

− 2𝜉
dC
d𝜉

= Dm
d2C
d𝜉2

. (A4)

Imposing the two boundary conditions yields

C(𝜉) − Cs

Cb − Cs
= erf (𝜉) , (A5)

where the erf(.) is the error function. The diffusive distance z that would have occurred over t = 𝜏K can be
determined from

C(𝜉) − Cs

Cb − Cs
= erf

(
z

2lB

)
. (A6)

If delineation of boundary layer thickness (i.e., z = 𝛿V ) is based on 90% attainment of relative concentration
change, then

erf

(
𝛿V

2lB

)
= 0.9, (A7)

resulting in r = 𝛿V ≈ 1.16(2lB), which, for simplicity, was selected as 𝛿V = r = (2lB) in the main text. It
is to be noted that a 95% and a 99% attainment of bulk concentrations would have yielded 𝛿V ≈ 1.36(2lB)
and 𝛿V ≈ 1.82(2lB). With these stricter definitions of boundary layer thickness, the similarity coefficient 𝛼 in
equation (2) increases to 𝛼 =

√
1.38 × (2∕15) = 0.43 and 𝛼 =

√
1.82 × (2∕15) = 0.49, respectively.
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