The "Inactive" Eddy Motion and the Large-Scale Turbulent Pressure Fluctuations in the Dynamic Sublayer

GABRIEL G. KATUL, JOHN D. ALBERTSON, CHENG-I HSIEH, PAUL S. CONKLIN, JOHN T. SIGMON, MARC B. PARLANGE, AND KEN R. KNOERR

*School of the Environment, Duke University, Durham, North Carolina
*Center for Hydrologic Sciences, Duke University, Durham, North Carolina
*Hydrologic Science, University of California, Davis, California

(Manuscript received 20 March 1995, in final form 16 February 1996)

ABSTRACT

The statistical structure of the turbulent pressure fluctuations was measured in the dynamic sublayer of a large grass-covered forest clearing by a free air static pressure probe and modeled using Townsend's hypothesis. Townsend's hypothesis states that the eddy motion in the equilibrium layer can be decomposed into an active component, which is only a function of the ground shear stress and height, and an inactive component, which is produced by turbulence in the outer region. It is demonstrated that the inactive eddy motion contributes significantly to the pressure and longitudinal velocity power spectra for wavenumbers much smaller than that corresponding to the height above the ground surface. Because of the importance of this inactive eddy motion contribution, it was possible to derive and validate a scaling law for the pressure power spectrum at low wavenumbers. The root-mean-square pressure was derived from the ground shear stress using simplifications to the Poisson equation that relate the Laplacian of the pressure fluctuations to the divergence of momentum. The theoretically derived and experimentally measured root-mean-square pressure values were in close agreement with other theoretical predictions and numerous laboratory measurements for wall pressure fluctuations. The relation between the root-mean-square pressure and the ground shear stress was also used to determine the similarity constant for the large-scale pressure spectrum. From considerations of the integral representation of the Poisson equation, previous laboratory measurements, and the present data, it was shown that this similarity constant does not vary appreciably with the roughness of the boundary layer. Finally, it was demonstrated that the inactive eddy motion does not contribute to the vertical velocity power spectrum in agreement with Monin and Obukhov surface-layer similarity theory.

1. Introduction

The turbulent pressure fluctuations in the atmospheric surface layer (ASL) play a central role in turbulent transport processes and in land–atmosphere interactions. Interest in turbulent pressure fluctuations is motivated by the role of 1) the pressure transport term in the turbulent kinetic energy (TKE) budget equation (e.g., Wyngaard and Cote 1971; McBean and Elliott 1975, 1978; Högström 1990), 2) the pressure gradients in linking small- and large-scale organized motion (e.g., Snarski and Lueptow 1995; Schols and Wartena 1986; Thomas and Bull 1983), and 3) the pressure fluctuations in air movement and dispersion within the lower parts of forest canopies (e.g., Sigmon et al. 1983; Shaw and Zhang 1992; Conklin 1994).

The statistical structure of the turbulent static pressure fluctuations is less understood than most other ASL flow variables (e.g., velocity or scalar fluctuations). This is, in part, due to the limited number of static pressure fluctuation experiments (hereafter referred to as free air static pressure measurements) carried out in the ASL. The difficulty in measuring static pressure fluctuations is attributed to the close coupling between static pressure and velocity so that changes in velocity caused by inserting a pressure probe will contaminate the measured static pressure with dynamic pressure effects (Wyngaard et al. 1994).

It is typically assumed that turbulent velocity statistics in the inner and outer regions of the atmospheric boundary layer (ABL) are universal functions of a limited number of dynamical variables (see Raupach et al. 1991 for review). An equivalent approach for the pressure fluctuations has not been formulated. The lack of a similarity theory for the pressure fluctuations may be attributed to the form of the Poisson equation. For incompressible turbulent flows, the static pressure is related to the velocity fluctuations through a Poisson equation derived from the divergence of the momentum balance. The solution to this Poisson equation at a point requires knowledge of the velocity components at all
points in the flow domain. In general, the turbulent velocity components cannot be determined at all points, thus limiting comprehensive theoretical treatments.

Despite this difficulty, the success of the Batchelor–Obukhov theory (see Batchelor 1953; Hill and Wilczak 1995) in describing the spectrum of the small-scale static pressure fluctuations for a locally isotropic turbulent flow was well documented by George et al. (1984) and Conklin et al. (1991). Analogous power law formulations for the larger scales of motion, which are nonisotropic, are not well developed. In this study, the term large scale refers to scales much larger than the height above the ground surface (z) but much smaller than the mesoscales. The term small scale or fine scale refers to scales much smaller than z but much larger than the Kolmogorov microscale (η). For the latter, the velocity and static pressure spectra follow the well-known $-5/3$ and $-7/3$ inertial subrange power scaling proposed by Kolmogorov (1941) and Batchelor (1953), respectively.

The objective of this study is to construct approximate similarity formulation for the large-scale statistical properties of the pressure fluctuation in the near-neutral ASL (hereafter referred to as dynamic sublayer). The focus is restricted to the dynamic sublayer since 1) any complete theory for the pressure fluctuations in the ASL must match, in the limit, the near-neutral stratification; 2) the statistical structure of the velocity is well understood in that layer; and 3) the dynamic sublayer provides a good basis for comparisons with the numerous wind tunnel and other laboratory studies. The proposed similarity formulation is a combination of simplifications to the Poisson equation and extensions of Townsend’s (1961) hypothesis regarding the respective roles of active and inactive eddy motion. The specific objectives are to derive analytical expressions for the pressure fluctuation power spectrum at small wavenumbers (large scales) and for the root-mean-square pressure fluctuations. The effects of active and inactive eddy motion in the dynamic sublayer of the ASL will also be considered for the longitudinal and vertical velocity for further support of Townsend’s (1961) hypothesis. For that purpose, 10-Hz triaxial sonic anemometer velocity, free air static pressure, and water vapor density measurements were carried out at 1.54 m above the ground surface in a large grass-covered forest clearing at the Duke University Forest in Durham, North Carolina.

2. Theory

Here we will present the general equation describing the turbulent pressure fluctuations as function of velocity, invoke simplifications to identify the relevant scaling parameters for the static pressure fluctuations in the near-neutral ASL, and finally, investigate the importance of Townsend’s (1961) hypothesis and Bradshaw’s (1967) analysis. These arguments are used to derive the spectral properties of the large-scale static pressure fluctuations for the dynamic sublayer of the ASL. In order to independently verify specific assumptions related to the eddy motion and Townsend’s (1961) hypothesis, the turbulent velocity field is also considered.

a. The general equation for static pressure fluctuations

Since our objective is to establish similarity relationships between the static pressure fluctuations and other ASL flow variables, a relationship between the static pressure and the velocity statistics is first discussed. Then Monin and Obukhov (1954) similarity (MOS) is used to describe the velocity, which in turn provides operational relationships between the static pressure statistics and other readily measured ASL flow variables. By taking the divergence of the Navier–Stokes (NS) equations

$$\frac{\partial U_i}{\partial x_i} = 0$$

$$\frac{\partial U_i}{\partial t} + U_j \frac{\partial U_i}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \nu \frac{\partial^2 U_i}{\partial x_j \partial x_j} + \frac{g}{T} \delta_{i3} \theta,$$

(1)

we obtain the Poisson equation relating the static pressure to the velocity field

$$\frac{\partial^2 P}{\partial x_i \partial x_i} = -\frac{\partial^2 U_i U_j}{\partial x_i \partial x_j} + \frac{g}{T} \delta_{i3} \frac{\partial \theta}{\partial x_i},$$

(2)

where U_i ($i = 1, 2, 3$) are the instantaneous velocity components, P is the kinematic static pressure (or pressure per unit density) departure from a hydrostatic reference state (Garratt 1992, 24–25), ν is the kinematic viscosity, T is the absolute mean kinetic temperature of the ASL, θ is the potential temperature, δ_{i3} is the Kronecker Delta, t is time, and x_i are the Cartesian coordinates. In this study, both meteorological and sensor notations ($U = U_1$, $V = U_2$, $W = U_3$; $x = x_1$, $y = x_2$, $z = x_3$) are used for velocity and position. The x_3 direction is aligned with the direction of the mean ground shear stress (τ_0).

Notice that the solution to the Poisson equation in (2) requires integration over the entire flow domain, and hence, the velocity field (i.e., $U_i U_j$) at all positions in the flow domain is needed to solve for P at x_i. This implies that P and $U_i U_j$ may not be locally related, and the velocity at very distant points can contribute to the pressure at x_i. Therefore, the pressure at a point need not be strongly correlated with the velocity at any one neighboring point.

The turbulent pressure fluctuations (p) can be derived following the usual Reynolds decomposition ($U_i = \langle U_i \rangle + u_i$; $P = \langle P \rangle + p$; $\theta = \langle \theta \rangle + \theta'$),
\[
\frac{\partial^2 p}{\partial x_i \partial x_j} = - \frac{\partial^2 (u_i \langle U_j \rangle + u_j \langle U_i \rangle)}{\partial x_i \partial x_j} + u_i u_j - \langle u_i u_j \rangle + \frac{g}{T} \frac{\partial \theta'}{\partial x_3},
\]

(3)

where \(\langle U_j \rangle \) are the mean velocity components, \(u_i \) are the turbulent velocity fluctuations about \(\langle U_j \rangle \) (\(u_0 = 0 \)), \(\langle P \rangle \) and \(p \), \(\langle \theta \rangle \) and \(\theta' \) are the mean and turbulent fluctuating part of the pressure and potential temperature, respectively, and \(\langle \cdot \rangle \) is the time-averaging operator assumed to converge to the ensemble-averaging operator by the ergodic hypothesis (see Monin and Yaglom 1971, 214–218).

In order to simplify (3), the approximate case where the turbulent flow is homogeneous in the mean in planes parallel to the ground surface for an ASL with negligible subsidence is considered so that

\[
\frac{\partial^2 p}{\partial x_i \partial x_j} = -2 \frac{\partial \langle U_j \rangle}{\partial x_3} \frac{\partial u_i}{\partial x_1}
\]

(1)

\[- \frac{\partial^2 (u_i u_j - \langle u_i u_j \rangle)}{\partial x_i \partial x_j} + \frac{g}{T} \frac{\partial \theta'}{\partial x_3}. \]

(II)

(III)

Therefore, \(p \) is influenced by three mechanisms in Eq. (4): I) the interaction of turbulence fluctuations normal to the ground surface with the mean shear, II) the interaction of turbulence with itself, and III) the thermal disturbances due to ground heating. In the dynamic sublayer, term III is much smaller than terms I and II and can be neglected.

b. Scaling variables for the turbulent pressure fluctuations

Kraichnan (1956a,b) suggested that the interaction of turbulence with the mean shear produces the major contribution to \(p \) close to the ground for an anisotropic and planar homogeneous turbulence. Panton and Lineburger (1974) found that 80% of the mean-square wall pressure fluctuation was produced by interaction of turbulence with the mean shear. Willmarth (1975) presented a comprehensive review of laboratory measurements supporting Kraichnan’s (1956a) arguments regarding the relative importance of terms I and II for the ground pressure fluctuations. We note that the measurements by Corcos (1963, 1964) do not support Kraichnan’s (1956a) arguments and conflict with later studies by Bull (1967), Bradshaw (1967), Blake (1970), and Thomas and Bull (1983). In the following analysis, Kraichnan’s (1956a) result is adopted as a first approximation for arriving at an appropriate scaling term for \(p \). Hence, in the dynamic sublayer, (4) simplifies to

\[
\frac{\partial^2 p}{\partial x_i \partial x_j} = -2 \frac{\partial \langle U_j \rangle}{\partial x_3} \frac{\partial u_i}{\partial x_1} = -2 \left(\frac{u_\theta}{k z} \right) \frac{\partial u_i}{\partial x_1},
\]

(5)

where \(k (=0.4) \) is von Kármán’s constant, \(u_\theta (=k \rho / \rho) \) is the friction velocity, and \(\rho \) is the air density (see also Townsend 1976, 165–167). Hence, (5) demonstrates that Kraichnan’s (1956a) argument results in a linear relation between the laplacian of the pressure fluctuations and the longitudinal gradient of the vertical velocity fluctuations in the dynamic sublayer. In order to relate the statistics of \(p \) in (5) to other ASL flow variables, dimensional considerations are considered next.

From Tennekes and Lumley (1972, p. 30), the appropriate normalizing variables for all instantaneous turbulence fluctuations are the root-mean-square amplitudes (rms). For \(p \) and \(u_i \), the rms amplitudes are \(\sigma_p = \langle p^2 \rangle^{1/2} \) and \(\sigma_{u_i} = \langle u_i^2 \rangle^{1/2} \) (where \(\sigma_{u_1} = \sigma_u \), \(\sigma_{u_2} = \sigma_v \), and \(\sigma_{u_3} = \sigma_w \)). Therefore, the dimensionless variables for pressure (\(p_\theta \), velocity (\(u_\theta \)), and length (\(x_\theta \)) are \(p / \sigma_p, u_i / \sigma_{u_i}, \) and \(x_i / L_\theta \), where \(L_\theta \) is a characteristic turbulence length scale. The characteristic length scale of the dynamic sublayer must be \(z (=x_3) \), and thus, the characteristic length scale of \(\partial u_i / \partial x_1 \) must be of order \(z \) (see, e.g., Yaglom 1979, 1993). The measurements by Bradshaw (1967) and Blake (1970) support this supposition and agree with the arguments presented by Hinze (1959, 500–502). Using these dimensionless variables,

\[
\frac{\sigma_p}{z^2} \left[\frac{\partial^2 p_\theta}{\partial x_i \partial x_j} \right] = 2 \frac{u_\theta}{k z} \frac{\sigma_{u_i}}{z} \frac{\partial u_i}{\partial x_1}.
\]

(6)

Since the dimensionless variables in square brackets on the left- and right-hand sides of (6) must be of the same order of magnitude (see Panton 1984, chapter 8), then

\[
\frac{\sigma_p}{z^2} \sim 2 \frac{u_\theta}{k z} \frac{\sigma_{u_i}}{z} \frac{\partial u_i}{\partial x_1}.
\]

(7)

For the dynamic sublayer, it is well recognized that \(\sigma_{u_i} = C_w u_\theta \) and, with \(k = 0.4 \) and \(C_w = 1.2 \) (Kader and Yaglom 1990; Raupach et al. 1991), \(\sigma_p \sim \sigma_{u_\theta} \), which is independent of \(z \). We should note that the above arguments are not valid for strongly unstable conditions since \(\sigma_{u_\theta} = C_w u_\theta (1 - 3z/L)^{1/3} \), which depends on \(z^{1/3} \). Interestingly, this estimate of \(\sigma_p \) is identical to Kraichnan’s (1956a) “mirror-flow” model estimate of \(C_p (=\sigma_p / \sigma_{u_\theta}) \), which he derived without the use of MOS. We note that an order of magnitude estimate can only provide a crude numerical value for \(C_p \).

c. Townsend’s (1961) hypothesis

Townsend’s (1961) hypothesis states that the turbulent eddy motion in the inner region of a boundary layer consists of an “active” part that produces the shear stress \(\tau_0 \) and whose statistical properties are universal functions of \(\tau_0 \), and a “inactive” and irrotational part determined by the turbulence in the outer region of the boundary layer. As shown by Raupach et al. (1991), necessary but not sufficient condi-
tions for the validity of Townsend’s (1961) hypothesis (as well as MOS) are as follows.

1) A local equilibrium between turbulent production and dissipation must exist.

2) The thickness of this dynamic layer must be much smaller than the total depth of the turbulent boundary layer \(h_b \) so that the turbulent production and dissipation rates in that layer are independent of eddies of size \(h_b \).

3) The variation of the shear stress across the dynamic layer must be negligible so as not to introduce an additional length scale that characterizes this variation.

Bradshaw (1967) evaluated Townsend’s (1961) hypothesis using surface pressure data and found it to be valid for \(z/h_b < 0.2 \). He attributed the inactive component partly to the irrotational motion due to pressure fluctuations produced in the outer region and partly to the large-scale vorticity field of the outer region turbulence, which the inner region senses as variability in the mean flow. Later, Perry and Abell (1977) and Perry et al. (1986) suggested that the outer region scales with \(u_* b \), while the inner region scales with \(u_* z \).

d. Low-wavenumber power spectra for \(p \) and \(u \)

In order to derive the power spectra for the large-scale velocity and turbulent pressure fluctuations and to be consistent with the framework of Kader and Yaglom (1990, 1991), we start with the general dimensional analysis proposed in Kader and Yaglom (1991) for the dynamic sublayer of the ASL:

\[
\frac{E_p(K)}{u_*^4 z} = \phi_p(Kz),
\]

\[
\frac{E_u(K)}{u_*^2 z} = \phi_u(Kz),
\]

(8)

where \(E_p(K) \) and \(E_u(K) \) are the power spectral density functions of \(p \) and \(u \), respectively, and \(K \) is the wavenumber along the longitudinal direction. Next we consider the large-scale eddy motion whose sizes are much larger than \(z \) and restrict our spectral analysis to \(K \ll 1 \) and \(Kh_b \gg 1 \). For these wavenumber limits, if Townsend’s (1961) hypothesis is valid, the spectra should scale with the outer-region rather than the inner-region variables and should therefore represent the inactive eddy motion (dimensions on the order of \(h_b \)) contributing to the dynamic sublayer (recall that the active eddy motion is of size \(z \)). Hence, \(E_p \) for the inactive eddy motion \((Kz \ll 1) \) must be independent of \(z \) (Kader and Yaglom 1991; Raupach et al. 1991). The height independence of the power spectra can only be achieved if

\[
\phi_p = \frac{C_{pw}}{Kz},
\]

(9)

where \(C_{pw} \) and \(C_{uw} \) are similarity constants. This leads to \(-1\) power-law expressions for \(E_p(K) \) and \(E_u(K) \), which are given by

\[
E_p(K) = C_{pw}u_*^4 K^{-1},
\]

\[
E_u(K) = C_{uw}u_*^2 K^{-1},
\]

(10)

For \(E_u \) the formulation is identical to that obtained by Kader and Yaglom (1991), Kader et al. (1989), Yaglom (1993) for \(Kz \ll 1 \) and \(Kh_b \gg 1 \) (see Yaglom 1993, 1994), and Katul et al. (1995b). Although the focus of this study is primarily on the pressure spectra, the velocity spectra are used to independently verify the role of inactive eddy motion. It is interesting to compare the above analysis with the conclusions by Farabee (1986) and the supporting data in Keith et al. (1992) and Keith and Bennett (1991). Based on a spectral solution of (3), Farabee (1986) and Farabee and Casarella (1991) concluded that spectral contributions to \(p \) at high frequencies are the result of turbulent velocity fluctuations in the wall region. However, their study showed that the contributions to \(p \) at low frequencies are the result of turbulent velocity fluctuations across the entire boundary layer, which is consistent with the arguments in Townsend (1976, 165). Clearly, Farabee’s (1986) analysis is consistent with the height-independence argument for \(Kz \ll 1 \). The height independence was also evident in Elliott’s (1972b) ground and free air static pressure spectra measurements.

3. Experiment

The experiment was carried out on 10–11 September (DOY = 253–254) 1994 in a 480 m (N–S) × 305 m (E–W) \(Alta fescue \) grass-covered forest clearing in the Blackwood division of the Duke Forest in Durham, North Carolina (latitude = 38°N, elevation = 163 m). The mean grass height during these two days was 0.4 m. The surrounding trees are 11-m tall southern loblolly pine (\(Pinus taeda \)).

In the northwest section of the plot (50 m from west edge and 100 m from north edge), a Gill triaxial sonic anemometer (Gill Instruments, model 1012S), a free air static pressure probe, and a Campbell Scientific krypton hygrometer were collocated at \(z = 1.54 \) m above the ground surface for measuring \(U, P \), and the water vapor density \((Q) \), respectively. The pressure probe and the Krypton hygrometer were situated 30 cm east and west, respectively, of the triaxial sonic anemometer.

The free air static pressure probe used in this study was manufactured by Conklin (1994) using the design of Robertson (1972) and is briefly reviewed in the appendix (see Conklin 1994, pp. 26–28, 93–96 for fur-
ther details). Conklin et al. (1991) compared two free air static pressure designs in the field and in a wind tunnel for performance and ease of construction. The first probe was already manufactured by Sigmon et al. (1983) using the design of Elliott (1972a,b), and the second probe was built at the School of the Environment, Duke University, using the design of Robertson (1972). While neither design showed clear superiority in these comparisons, Conklin (1994) selected the design of Robertson (1972) based on ease of fabrication and uniform response for a wider range of attack angles, as often found at forested sites.

The Gill sonic anemometer was calibrated at the Department of Aeronautics and Astronautics wind tunnel facility (2.1 m × 1.5 m × 4.4 m) at Southampton University and tested for any transducer delays and flow distortions. The sonic pathlength for this unit is 0.149 m. The pathlength for the Campbell Scientific krypton hygrometer is 1.342 cm. The absolute temperature (T), used in determining the sensible heat flux, was computed from the measured speed of sound (c_s) using

$$T = \frac{c_s^2}{a_T R_g},$$

(11)

where $a_T = C_{ps}/C_{wa} = 1.4$, C_{ps} and C_{wa} are the specific heat capacities of dry air at constant pressure and volume, respectively, and $R_g = 287.04$ J kg$^{-1}$ K$^{-1}$ is the gas constant for dry air. The adequacy of the Gill triaxial sonic anemometer for measuring temperature fluctuations is discussed in Katul (1994) and Katul et al. (1994a,b).

A Campbell Scientific 21X micrologger was used to sample the measured signals at 10 Hz, and the data were transferred to a personal portable computer via a serial input–output optically isolated RS232 interface. The experiment resulted in 26 runs each having a duration of 27.3 minutes ($N = 16$ 384 data points per measured flow variable per run). The mean meteorological and turbulence conditions for all 26 runs are presented in Table 1, where the integral time scales for u_i ($= I_{ui}$) and p ($= I_p$), and the Obukhov length ($= L_{mo}$) were calculated from

$$I_{ui} = \frac{1}{\langle u_i^2 \rangle} \int_0^\infty \langle u_i(t + \tau) u_i(t) \rangle d\tau; \quad i = 1, 2, 3,$$

$$I_p = \frac{1}{\langle p^2 \rangle} \int_0^\infty \langle p(t + \tau) p(t) \rangle d\tau,$$

$$L_{mo} = \frac{-\rho u_g^2}{k g} \left[H (C_p T + 0.61 \frac{L_e E}{L_i}) \right],$$

(12)

where $g = 9.81$ m s$^{-2}$ is the gravitational acceleration, $H = \rho C_{pa} (u \theta')$ is the sensible heat flux, $C_{pa} = 1005$ J kg$^{-1}$ K$^{-1}$, $L_e = 2.48 \times 10^8$ J Kg$^{-1}$ is the latent heat of vaporization, $E = L_e (q g)$ is the latent heat flux, and $q (= Q - \langle Q \rangle)$ is the water vapor density fluctuation. In order to compute I_{ui} and I_p, from finite datasets ($N = 16$ 384), the integration was carried out to the first zero crossing. Notice from Table 1 that an order of magnitude analysis results in $\langle U_i \rangle \sim 1$ m s$^{-1}$, $I_{ui} \sim 10$ s, $I_p \sim 20$ s, and $I_{mo} \sim 1$ s. Hence, the eddy sizes contributing to the vertical motion ($= \langle U_i \rangle I_{ui}$) are of order 2 ($= 1.54$ m), while those contributing to the longitudinal motion ($= \langle U_i \rangle I_{ui}$) and pressure ($= \langle U_i \rangle I_p$) are of order 10 m. These eddy-size estimates are consistent with Bradshaw’s (1967) argument that the vertical exchange processes scale with z, while the horizontal exchange processes are influenced by the in-active eddy motion in the outer layer. It is interesting to note that these measured velocity length scale ratios $[\langle U_i \rangle I_{ui}]/[\langle U_i \rangle I_{ui}] = 20$ are in good agreement with Kader et al. (1989) relations for a neutral ASL ($L_{mo}/L_w = 10.3 \pm 0.5 = 20.6$).

A sample output of the measurements is shown in Fig. 1 for run 3. Notice from Fig. 1 that the large-scale pressure timescales are more compatible with u than with w even for very small $\langle U_i \rangle$ (see Table 1).

When comparing results with laboratory studies, it is customary to report the roughness Reynolds number R^* ($= u_g z_{0}/v$) to identify whether the boundary-layer flow regime is hydrodynamically smooth, transitional, or fully rough. For that purpose, it is necessary to estimate the momentum roughness height z_{0}. A mean z_{0} value was obtained by iteratively minimizing the mean squared difference between the predicted $\langle U_i \rangle$ from

$$\Psi_m \left(\frac{z}{L_{mo}} \right) = 2 \ln \left(\frac{1 + \chi}{2} \right) + \ln \left(\frac{1 + \chi^2}{2} \right) - 2 \tan^{-1}(\chi) + \frac{\pi}{2},$$

(13)

and the triaxial anemometer measured $\langle U_i \rangle$ for all 26 runs. In (26), u_g and z/L_{mo} were measured by the triaxial sonic anemometer, and $\Psi_m (z/L_{mo})$ is the momentum stability correction function presented in Brutsaert (1982, 70). With measured u_g, L_{mo}, and z_0 ($= 0.10$ m), a comparison between predicted and measured $\langle U_i \rangle$ is carried out in Fig. 2. Good agreement between predictions and measurements is noted, indicating that $z_0 = 0.10$ m is a valid estimate. Also, this estimate of z_0 is in agreement with other estimates for natural grass surfaces reported in Brutsaert (1982, 115; Table 5.1) and Sorbian (1989, 68; Table 4.1). For the purpose of this study, we set the zero-plane displacement height to zero. With this estimate of z_0, it is evident that R^* exceeds 1000. Therefore, the grass-covered surface is hydrodynamically rough and inde-
Table 1. Summary of mean meteorological and turbulence conditions. Runs 1–9 are for DOY = 253 (start time = 1135 EST), and runs 10–26 are for DOY = 254 (start time = 1003 EST). The sensible (H) and latent (LE) heat fluxes are also shown.

<table>
<thead>
<tr>
<th>Run</th>
<th>u_0 (m s$^{-1}$)</th>
<th>H (W m$^{-2}$)</th>
<th>L_E (W m$^{-2}$)</th>
<th>$-z/L_m$</th>
<th>T (K)</th>
<th>$\langle u_1 \rangle$ (m s$^{-1}$)</th>
<th>L_1 (s)</th>
<th>L_2 (s)</th>
<th>L_3 (s)</th>
<th>L_4 (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.211</td>
<td>153</td>
<td>240</td>
<td>0.33</td>
<td>301.1</td>
<td>1.21</td>
<td>13.8</td>
<td>18.8</td>
<td>1.0</td>
<td>7.3</td>
</tr>
<tr>
<td>2</td>
<td>0.096</td>
<td>145</td>
<td>210</td>
<td>3.26</td>
<td>301.7</td>
<td>0.43</td>
<td>86.9</td>
<td>18.4</td>
<td>2.8</td>
<td>16.2</td>
</tr>
<tr>
<td>3</td>
<td>0.126</td>
<td>124</td>
<td>207</td>
<td>1.23</td>
<td>301.9</td>
<td>0.26</td>
<td>65.5</td>
<td>59.7</td>
<td>1.6</td>
<td>19.4</td>
</tr>
<tr>
<td>4</td>
<td>0.203</td>
<td>98</td>
<td>226</td>
<td>0.25</td>
<td>301.8</td>
<td>0.71</td>
<td>34.6</td>
<td>67.6</td>
<td>2.6</td>
<td>24.2</td>
</tr>
<tr>
<td>5</td>
<td>0.205</td>
<td>87</td>
<td>211</td>
<td>0.22</td>
<td>302.0</td>
<td>0.85</td>
<td>27.6</td>
<td>33.9</td>
<td>2.1</td>
<td>17.2</td>
</tr>
<tr>
<td>6</td>
<td>0.233</td>
<td>61</td>
<td>171</td>
<td>0.11</td>
<td>301.5</td>
<td>1.01</td>
<td>18.3</td>
<td>52.9</td>
<td>1.6</td>
<td>5.7</td>
</tr>
<tr>
<td>7</td>
<td>0.196</td>
<td>24</td>
<td>140</td>
<td>0.08</td>
<td>300.8</td>
<td>0.71</td>
<td>7.8</td>
<td>44.7</td>
<td>1.7</td>
<td>13.6</td>
</tr>
<tr>
<td>8</td>
<td>0.112</td>
<td>22</td>
<td>109</td>
<td>0.40</td>
<td>301.0</td>
<td>0.38</td>
<td>19.5</td>
<td>47.4</td>
<td>2.5</td>
<td>13.5</td>
</tr>
<tr>
<td>9</td>
<td>0.067</td>
<td>18</td>
<td>46</td>
<td>1.28</td>
<td>299.9</td>
<td>0.24</td>
<td>22.2</td>
<td>62.2</td>
<td>2.5</td>
<td>20.4</td>
</tr>
<tr>
<td>10</td>
<td>0.320</td>
<td>99</td>
<td>134</td>
<td>0.06</td>
<td>296.2</td>
<td>1.72</td>
<td>41.8</td>
<td>41.4</td>
<td>0.6</td>
<td>31.0</td>
</tr>
<tr>
<td>11</td>
<td>0.310</td>
<td>119</td>
<td>174</td>
<td>0.08</td>
<td>297.1</td>
<td>1.41</td>
<td>8.5</td>
<td>32.2</td>
<td>0.8</td>
<td>28.8</td>
</tr>
<tr>
<td>12</td>
<td>0.293</td>
<td>118</td>
<td>166</td>
<td>0.10</td>
<td>297.9</td>
<td>1.46</td>
<td>24.1</td>
<td>44.6</td>
<td>0.7</td>
<td>9.6</td>
</tr>
<tr>
<td>13</td>
<td>0.298</td>
<td>132</td>
<td>207</td>
<td>0.10</td>
<td>298.5</td>
<td>1.40</td>
<td>34.3</td>
<td>43.2</td>
<td>1.0</td>
<td>9.8</td>
</tr>
<tr>
<td>14</td>
<td>0.278</td>
<td>134</td>
<td>208</td>
<td>0.13</td>
<td>299.0</td>
<td>1.43</td>
<td>27.5</td>
<td>26.3</td>
<td>0.9</td>
<td>15.6</td>
</tr>
<tr>
<td>15</td>
<td>0.323</td>
<td>143</td>
<td>228</td>
<td>0.09</td>
<td>299.5</td>
<td>1.80</td>
<td>19.5</td>
<td>27.3</td>
<td>0.7</td>
<td>17.9</td>
</tr>
<tr>
<td>16</td>
<td>0.307</td>
<td>208</td>
<td>312</td>
<td>0.15</td>
<td>300.3</td>
<td>1.10</td>
<td>19.3</td>
<td>18.1</td>
<td>2.3</td>
<td>8.6</td>
</tr>
<tr>
<td>17</td>
<td>0.225</td>
<td>154</td>
<td>210</td>
<td>0.27</td>
<td>300.0</td>
<td>0.86</td>
<td>19.8</td>
<td>54.4</td>
<td>0.9</td>
<td>20.8</td>
</tr>
<tr>
<td>18</td>
<td>0.251</td>
<td>144</td>
<td>196</td>
<td>0.18</td>
<td>300.4</td>
<td>1.16</td>
<td>19.0</td>
<td>37.6</td>
<td>0.7</td>
<td>27.3</td>
</tr>
<tr>
<td>19</td>
<td>0.188</td>
<td>122</td>
<td>193</td>
<td>0.38</td>
<td>300.6</td>
<td>0.52</td>
<td>19.6</td>
<td>41.8</td>
<td>1.2</td>
<td>25.1</td>
</tr>
<tr>
<td>20</td>
<td>0.239</td>
<td>112</td>
<td>208</td>
<td>0.17</td>
<td>300.5</td>
<td>1.04</td>
<td>33.9</td>
<td>77.8</td>
<td>0.9</td>
<td>56.0</td>
</tr>
<tr>
<td>21</td>
<td>0.288</td>
<td>158</td>
<td>264</td>
<td>0.13</td>
<td>301.3</td>
<td>1.14</td>
<td>70.9</td>
<td>48.2</td>
<td>2.1</td>
<td>25.2</td>
</tr>
<tr>
<td>22</td>
<td>0.214</td>
<td>86</td>
<td>153</td>
<td>0.18</td>
<td>300.0</td>
<td>1.01</td>
<td>25.4</td>
<td>18.2</td>
<td>1.6</td>
<td>24.2</td>
</tr>
<tr>
<td>23</td>
<td>0.158</td>
<td>37</td>
<td>101</td>
<td>0.20</td>
<td>299.9</td>
<td>0.78</td>
<td>10.8</td>
<td>21.1</td>
<td>1.2</td>
<td>10.9</td>
</tr>
<tr>
<td>24</td>
<td>0.164</td>
<td>47</td>
<td>112</td>
<td>0.23</td>
<td>300.1</td>
<td>0.85</td>
<td>18.9</td>
<td>19.1</td>
<td>0.8</td>
<td>19.0</td>
</tr>
<tr>
<td>25</td>
<td>0.150</td>
<td>11</td>
<td>83</td>
<td>0.10</td>
<td>298.9</td>
<td>0.66</td>
<td>33.5</td>
<td>14.7</td>
<td>1.4</td>
<td>17.9</td>
</tr>
<tr>
<td>26</td>
<td>0.121</td>
<td>4</td>
<td>47</td>
<td>0.08</td>
<td>298.8</td>
<td>0.60</td>
<td>16.6</td>
<td>11.5</td>
<td>1.9</td>
<td>6.5</td>
</tr>
</tbody>
</table>

4. Results and discussion

This section is divided into three parts. The first part discusses some generalities about the dynamic sublayer identification, the second part presents the relationship between σ_w and u_0, and the third part presents the spectral characteristics of pressure fluctuations, large-scale longitudinal eddy motion, and large-scale vertical eddy motion in the dynamic sublayer.

a. Identification of the dynamic sublayer

In theory, the dynamic sublayer occurs only when $-z/L_m = 0$. In practice, a finite but small z/L_m results in an “operational” dynamic sublayer, depending on the purpose of the study. In order to identify this dynamic sublayer, we employ the dimensionless rms for u_3 (to represent vertical motion), the dimensionless rms for u_1 (to represent horizontal motion), and the dimensionless shear stress (to represent the constant stress layer). Figures 3a and 3b show the variation of σ_w/u_0 and σ_u/u_0 with z/L_m, respectively. In the dynamic sublayer, the stability parameter does not influence the velocity statistics so that σ_w/u_0 and σ_u/u_0 are constants independent of z/L_m. It appears from Figs. 3a and 3b that the influence of stability on σ_w and σ_u is negligibly small for $-z/L_m \leq 0.2$. In a separate study, it was shown that when the mean wind direction was from the west and northwest, the measurements at the clearing were influenced by the forest and σ_n/u_0 was larger than MOS predictions (see Katul et al. 1995a). These runs were not considered in this experiment.

To further check the $-z/L_m \leq 0.2$ stability range, the dimensionless shear stress R_{aw} defined by
Many experiments on rough and smooth wall turbulent boundary layers result in surprisingly very similar estimates for \(C_p \) at the wall and in the free atmosphere. From Table 1, it appears that \(C_p \) does not vary appreciably with \(z \), nor does it vary appreciably with the roughness of the surface. Both of these results are consistent with the argument that the main contribution to \(\sigma_u \) is from inactive eddy motion generated in the outer layer. The fact that \(C_p \) does not vary appreciably with \(z \) close to the ground surface, and the fact that the mean integral length scale is not comparable to \(z \), implies that the main contribution to \(\sigma_u \) is from eddy sizes that do not scale with \(z \). Hence, \(C_p \) cannot be significantly affected by the active eddy motion in the dynamic layer. Also, since \(C_p \) is similar for rough and smooth turbulent boundary layers, this implies that the details of the boundary roughness elements are not directly responsible for \(C_p \). Hence, the contributions to \(C_p \) cannot originate from the viscous sublayer (see Townsend 1976, 168). Therefore, the main contribution to \(\sigma_u \) must be from the inactive eddy motion in the outer layer. This layer is not directly influenced by the surface properties and is only affected by the boundary through \(u_* \). Also, the turbulence statistics in this layer are independent of \(z \). This is consistent with \(C_p \) being independent of \(z \) and the Eulerian integral timescale analysis presented in section 3.

c. The large-scale spectral characteristics of the pressure fluctuations

As discussed in section 2c, for \(K_z \ll 1 \), \(E_p(K) \) and \(E_p(K) \) are governed by the inactive motion in the outer layer. Figures 5a and 5b display the normalized longitudinal velocity and pressure spectra as a function of the normalized wavenumber \(K_z \) for all runs with \(-z/L_{m0} \leq 0.2 \). The spectra were calculated by square windowing 8192 data points and cosine tapering the window edges, computing the power spectra for each window, and finally averaging the resultant spectral density functions for each run. Taylor's frozen hypothesis was used to convert the time to the wavenumber domain. An extensive \(-1 \) power law is present for \(0.02 < K_z < 0.5 \) in both figures. We note that the data of Kader and Yaglom (1991) also exhibit a \(-1 \) power law with the estimated \(C_w = 0.95 \). The \(-1 \) power law \(= 0.95 (K_z)^{-1} \) is plotted (solid line) in Fig. 5a and is in good agreement with the measurements. Recall from section 4b that if the inactive eddy motion contributes most to \(\sigma_p \), then it should be possible to estimate \(C_{\rho p} \) from \(C_{u*} (-2.4) \) using

\[
\sigma_p^2 = \left(C_{\rho u*}^2 \right) K^{-1} dK = C_{\rho u*}^2 \ln \left(\frac{K_z}{K_u} \right),
\]

where \(C_{\rho u*} \) is of order unity. From (15), \(C_{\rho u*} = 2.4 \) was computed by regressing the measured \(\sigma_p \) with the measured \(u_* \) and forcing the regression through the origin. Table 2 summarizes the measured \(C_{\rho u*} \) for surface-pressure and free air pressure fluctuations for a wide range of laboratory and ASL studies over smooth and rough-wall turbulent boundary layers. We should note that in Table 1, Elliott's (1972a,b) data are the only data collected in the atmosphere, and no atmospheric stability limit was reported. In Fig. 4, a comparison between measured \(\sigma_p \) and predicted \(\sigma_p \) (\(= 2.4 u_*^2 \)) is displayed for all 26 runs. Good agreement between measurements and predictions are noted. Our estimated value for \(\rho C_{\rho u*} \)

\[
(1.08 \text{ kg m}^{-3} \times 2.4) \approx 2.6
\]

is identical to that of Elliott (1972a, b).
where K_L and K_u define the wavenumber limits of the -1 power law. From Fig. 5b, $K_u/K_L \approx 25$, and thus $C_{no} (=C_p^2/\ln[K_u/K_L]) \approx 1.7$. The power law $1.7 (K_z)^{-1}$ (solid line) is also shown in Fig. 5b and is in good agreement with the measurements. The data by Kataoka et al. (1989) and Gorshkov (1967) also exhibit a -1 power law, but no explicit justification was provided by these authors. The wall-pressure spectra measurements in Keith et al. (1992), Farabee and Casarella (1991), and Keith and Bennett (1991) exhibit an approximate -1 power law for the range of scales corresponding to $0.08-0.5 \ h_b$ (these limits are approximate and are estimated by us based on the assumption that the free shear velocity is identical to the convection velocity). We should note that Panton and Linebarger (1974) reported some Reynolds number dependence of E_ω in the -1 power law range, and the spectra by Elliott (1972a,b) did not exhibit a -1 but a -0.7 power law (data in Elliott combines unstable and stable runs).

We consider whether C_{no} could be a universal constant independent of the boundary layer roughness. It appears that (16) and the data in Table 2 suggest that C_{no} is not a function of surface roughness since C_{no} did not vary significantly for rough and smooth wall boundary-layer ex-

![Figure 3](image-url)
Table 2. The values of ρC_p for surface and free air static pressure in rough and smooth wall turbulent boundary layers. The measured value from this experiment is 2.6.

<table>
<thead>
<tr>
<th>Reference</th>
<th>ρC_p</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blake (1970)</td>
<td>2.9–3.8</td>
<td>Wall pressure, smooth and rough boundary layers, measured.</td>
</tr>
<tr>
<td>Bull (1967)</td>
<td>2.1–2.5</td>
<td>Wall pressure, smooth wall wind tunnel, measured.</td>
</tr>
<tr>
<td>Corcos (1964)</td>
<td>2.1</td>
<td>Wall pressure, turbulent pipe flow, measured.</td>
</tr>
<tr>
<td>Elliott (1972a,b)</td>
<td>2.6</td>
<td>Free air, natural surface, measured.</td>
</tr>
<tr>
<td>Farabee and Casarella (1991)</td>
<td>2.6–3.1</td>
<td>Wall pressure, wind tunnel, measured.</td>
</tr>
<tr>
<td>Kraichnan (1956a,b)</td>
<td>6.0</td>
<td>Estimated by the mirror-flow model.</td>
</tr>
<tr>
<td>Willmarth (1975)</td>
<td>2.1–3.1</td>
<td>Wall pressure, rough and smooth wall, measured.</td>
</tr>
<tr>
<td>Willmarth and Yang (1970)</td>
<td>2.39–2.8</td>
<td>Wall pressure, axially symmetric and plane boundary layers.</td>
</tr>
<tr>
<td>Willmarth and Wooldridge (1962)</td>
<td>2.19</td>
<td>Wall pressure, smooth boundary layer, measured.</td>
</tr>
</tbody>
</table>

Experiments. An explanation to this roughness boundary invariance might be derived from the behavior of the solution to the Poisson equation away from the boundary. Let us illustrate by using (3), which is written as

$$\frac{\partial^2 p}{\partial x_i \partial x_i} = -\beta(x_i) \Rightarrow p(x_i) = \frac{1}{4\pi} \int \beta(\alpha_i) \frac{1}{x_i - \alpha_i} d\alpha_i + H_{bc}(x_i, \beta(x_i));$$

with

$$\frac{\partial^2 H_{bc}}{\partial x_i \partial x_i} = 0,$$ \hspace{1cm} (17)

where the integration is carried out over the entire flow domain D, and H_{bc} is a harmonic function whose purpose is to ensure that the boundary conditions for (17) are satisfied (Warsi 1993, 479–481). It should be noted that (17) is not an explicit solution for p since the velocity field is needed over the entire flow domain. However, for the three-dimensional Poisson equation in (17), an important property of H_{bc} is its rapid decay with distance from the boundary (Greenberg 1978, 579–595; it should be pointed out that for a two-dimensional laplace equation, the decay of H_{bc} with distance from the boundary is logarithmic and much slower than the three-dimensional case). The rapid decay of H_{bc} does suggest that the influence of the boundary condition details is restricted to a small portion of the flow domain that is in close proximity to the boundary. Away from the boundary, the pressure must become independent of the boundary roughness variations.

The important comment by Townsend (1961) and Bradshaw (1967) regarding the negligible influence of the inactive eddy motion on the vertical transport must be carefully reevaluated in light of recent studies by Högtrelm (1990) and Smedman (1991). Högtrelm (1990) suggested that the inactive turbulence does contribute to the vertical motion in dynamic sublayer. He attributed the contribution of the inactive eddy motion to the variation of σ_u/\tilde{U}_g with z. Smedman (1991) also found that Högtrelm’s (1990) data is in agreement with near-neutral σ_u/\tilde{U}_g and σ_v/\tilde{U}_g surface-layer measurements at five sites. Whether the inactive eddy motion contributes to the vertical motion appears to be unclear (see Yaglom 1993). We note that the variation in σ_u/\tilde{U}_g measured by Smedman (1991) is only between 1.15 and 1.3 for all five sites.

If the inactive eddy motion significantly influences the vertical transport, then the spectrum of the vertical velocity $E_z(K)$ should be, to a first approximation, similar to $E_u(K)$ for $Kz \ll 1$. That is, $E_z(K) = C_{wz} u_*^2 K^{-1}$ could be derived as was earlier done for the longitudinal velocity using the height independence arguments. The dimensionless vertical velocity power spectrum is shown in Fig. 5c as a function of the dimensionless wavenumber. In contrast to Figs. 5a and 5b, it is evident from Fig. 5c that a -1 power law does not
exist for $K_z \ll 1$. We note that Kader and Yaglom (1991), Katul et al. (1995b), and Katul and Parlange (1995) did measure a short -1 power law for E_u in the unstable ASL; however, these measurements were restricted to $K_z > 0.3$ and thus cannot be the result of the larger-scale inactive eddy motion.

The arguments regarding the role of the inactive eddy motion in the inner region is also in agreement with earlier ASL measurements presented in Panofsky and Dutton (1984, 160–168). The data in Panofsky and Dutton (1984) clearly demonstrate that σ_u scales with z/L_{mo}, while σ_u does not for the unstable ASL. The authors found that σ_u is independent of z and scales with h_u/L_{mo}. The fact that σ_u is dependent on h_u further suggests that the inactive eddy motion in the outer layer governs the horizontal transport statistics (see also Gifford 1989). Panofsky and Dutton’s (1984) data are also consistent with Fig. 5a, for which E_u was derived using the height-independence argument. We note that the range $K_z < 0.5$ contributes, on average, to 90% of the variance of u for the 16 runs.

d. Further comments on E_u and E_v at low wavenumbers

The possibility that the large scales in wall-bounded shear flow possess a universal spectral behavior is not new and was first proposed by Tchen (1953). Tchen (1953) noted that the interaction between the large-scale eddies and the mean flow is controlled by the
terms involving \(u_i \langle U_j \rangle \) and \(u_i \langle U_i \rangle \). He concluded that
the spectrum of \(u_i \) is proportional to \(K^{-1} \) when the
vorticity of the mean flow is large and interacting with the
turbulent motion. It is interesting to compare the similari-
ties in Tchen's (1953) arguments with those of
Kraichnan (1956a,b) and Townsend (1961), as util-
ized in the above derivation. Later, Klebanoff (1954)
conducted experiments in a boundary layer along a
smooth flat plate with zero pressure gradient. His re-
sults support Tchen's (1953) predictions for the \(u_i \)
spectrum (\(E_u \)) at low wavenumbers, especially for \(z/ h_b \sim 0.05 \), (see also Hinze 1959, 501). It is noted that
in Klebanoff's (1954) experiments, \(E_u \) did not exhibit
a \(-1\) power law for \(z/ h_b = 0.0011 \) and \(z/ h_b = 0.8 \). Hinze (1959) suggests that the \(-1\) power law occurs in
the proximity of the wall boundary, yet far enough
away so that viscous effects have negligible influence
on the large scales. Interestingly enough, Hinze (1959)
proposed that at \(z/ h_b = 0.05 \) strong production of tur-
bulence energy takes place by turbulence–mean flow
interaction. As \(z/ h_b \) decreases, the contribution of
larger eddies to the turbulent energy reduces at the low
wavenumber end but increases at the high wavenumber
end of the energy spectrum. Experiments for turbulent
air flow in pipes by Perry and Abell (1975) focused on
the scaling properties of \(E_u \) in the overlap region be-
tween the "inner flow" and "outer flow." The loga-
rithmic mean velocity profile, originally derived by
Izakson (1937) and used by Millikan (1939) to arrive at
the Prandtl–Nikuradse skin friction law (see Monin
and Yaglom 1971, 299), exists in this region. Perry
and Abell (1975) found that \(E_u \) is proportional to \(K^{-1} \)
for low wavenumbers but that \(E_u \) is not, which is in
agreement with the present results. This was inde-
pendently confirmed by Korotkov (1976) using channel
flow data. Raupach et al. (1991) and Antonia and Rap-
pach (1993) discussed the existence of a \(-1\) power law
scaling for \(E_u \) and \(E_w \) in rough wall boundary layers but
argued against its existence in the ASL based on the
Kansas experiments reported in Kaimal et al. (1972).
They attributed the general absence of a \(K^{-1} \) scaling to
the buoyancy effects in the ASL that are absent in the
outer region of many laboratory boundary layers. Fur-
ther details on other studies can be found in Yaglom
et al. (1995b). All these results appear to support the
present arguments regarding the role of the inactive
eddy motion in the dynamic sublayer.

5. Conclusions

The large-scale structure of the pressure field was
investigated using measured static pressure fluctua-
tions in the dynamic sublayer over a grass-covered forest
clearing. The boundary was shown to be hydrodynam-
ically rough for all runs during the experiment. Our
results demonstrate the following.

1) The inactive eddy motion in the outer region of
the atmospheric boundary dominates the large-scale
statistical structure of the turbulent static pressure and
longitudinal velocity fluctuations. This conclusion sup-
ports Townsend's (1961) hypothesis, Bradshaw's
(1967) analysis, and Tchen's (1953) arguments.

2) The Eulerian integral timescale for the pressure
is an order of magnitude larger than that of the vertical
velocity. This result demonstrates that the eddy sizes
contributing to the pressure internal correlation are
larger than \(z \) in the dynamic sublayer. The Eulerian
length scales for vertical velocity, as derived from the
Eulerian timescales and Taylor's hypothesis, are very
close to \(z \). This conclusion is consistent with the role
of active--inactive eddy motion in the dynamic sub-
layer in the longitudinal and vertical directions.

3) The ratio of the root-mean-square pressure fluc-
tuations and the squared friction velocity (\(C_p \)) at
the ground and in the free atmosphere were found to be
very similar for rough and smooth boundary-layer
flows. This indicates that, to a first approximation, \(C_p \)
is a constant independent of height and surface rough-
ness. Our experimentally derived value for \(C_p \) closely
resembles values derived from laboratory wall pressure
measurements reviewed by Willmarth (1975).

4) The low-wavenumber spectral properties of the
pressure for eddy sizes much larger than the measure-
ment height (\(Kz \ll 1 \)) follow a well defined \(-1\) power
law. The only dynamic parameter influencing this spec-
trum is \(h_B \). Based on the integral representation of the
Poisson equation for \(p \), it was demonstrated that the
wall boundary roughness does not influence the statis-
tical properties in the outer region. A conclusion de-

erived from this argument is that the similarity constant
\(C_{pp} \), for the low-wavenumber pressure spectrum, is
independent of the boundary-layer roughness.

5) The inactive eddy motion does not contribute to
the vertical exchange processes as evidenced by the
vertical velocity power spectrum in the dynamic sub-
layer, thus reinforcing the well-established similarity
formulations for vertical velocity.

Acknowledgments. The authors would like to thank
Professors Akiva Yaglom and Douglas Lilly for their
comments and suggestions, and Judd Edeburn for his
help at the Duke Forest. This project was supported, in
part, by the Environmental Protection Agency under
the cooperative agreement 91-0074-94 (CR817766)
and the National Science Foundation through Grants
BIR-9512333 and ATM-7825944, and the NASA grad-
uate fellowship in Global Climate Change Research
Program.

APPENDIX

Pressure Probe Details

Although much of this material is discussed in great
details by Conklin (1994), we present the main ele-
ments of the pressure sensor design. The free air pressure sensor was manufactured by P. Conklin at the School of the Environment (Duke University) following the design of Robertson (1972). Conklin et al. (1991) carried out a wind tunnel and in situ comparison of the probe designed by Robertson and another probe manufactured by Sigmon et al. (1983) following the design of Elliott (1972a). While Conklin et al. (1991) concluded that neither design showed clear superiority, they suggested the use of the design of Robertson for ease of fabrication. This design consists of 15-cm diameter parallel flat plates separated by 10 cm. The aluminum plates are 1/16 inch thick with brass fittings threaded into each plate for the 2-mm pressure transducer ports. The fittings were machined flush with the surface. The inside surface of each plate was then polished. The pressure probe was attached by a 65-cm long tube to a Datametrics model 570D-10B-2A1-VIX Barocell pressure transducer. The capacitance output from this transducer was converted to an analog voltage signal in the instrument using a model 1015-A4C-12A1-G electronic manometer. The pressure transducer reference was connected to a 1-L vacuum insulated flask that is vented to the atmosphere by a long capillary tube. In essence, the reference flask acts as a low-pass filtered reference that efficiently removes nonoptical-scale pressure changes (see, e.g., Kataoka et al. 1989). The capillary tube capillary time constant was measured from a first-order exponential response curve to be 11.2 minutes.

To determine the response of the probe to horizontal and vertical rotations, the probe was installed in a laminar boundary-layer wind tunnel (cross section is 1.5 m × 1.5 m). A pitot tube situated upstream of the pressure probe was connected to the reference side of the pressure transducer so that differences between the two readings are directly monitored. The pressure probe had a constant response for wind attack angles up to 20° and three wind speeds of 3, 5, and 10 m s⁻¹. The response of the probe was invariant to horizontal rotations for all three wind speeds.

REFERENCES
—, D. Albertson, M. B. Parlange, C. R. Chu, and H. Stricker, 1994a: Conditional sampling, bursting, and the intermittent

